| A. | $\frac{{16\sqrt{3}}}{3}$ | B. | $16(2+\sqrt{3})$ | C. | $4(2-\sqrt{3})$ | D. | 16 |
分析 由题意方程求出a,c的值,在△PF1F2中,由余弦定理求得PF1PF2的值,代入三角形面积公式得答案.
解答 解:如图,![]()
由椭圆$\frac{x^2}{5}+\frac{y^2}{4}=1$,得a2=5,b2=4,则c2=a2-b2=1,
∴$a=\sqrt{5},c=1$.
在△PF1F2中,由余弦定理得:${F}_{1}{{F}_{2}}^{2}=P{{F}_{1}}^{2}+P{{F}_{2}}^{2}-2P{F}_{1}P{F}_{2}•cos∠{F}_{1}P{F}_{2}$,
即$4{c}^{2}=(P{F}_{1}+P{F}_{2})^{2}-2P{F}_{1}P{F}_{2}-2P{F}_{1}P{F}_{2}×\frac{\sqrt{3}}{2}$,
则$4=(2\sqrt{5})^{2}-(2+\sqrt{3})P{F}_{1}P{F}_{2}$,得$P{F}_{1}P{F}_{2}=16(2-\sqrt{3})$.
∴△F1PF2的面积S=$\frac{1}{2}×P{F}_{1}P{F}_{2}sin30°=\frac{1}{2}×16(2-\sqrt{3})×\frac{1}{2}$=$4(2-\sqrt{3})$.
故选:C.
点评 本题考查椭圆的简单性质,考查了焦点三角形面积的求法,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | -$\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com