精英家教网 > 高中数学 > 题目详情
8.若无论实数a取何值时,直线ax+y+a+1=0与圆x2+y2-2x-2y+b=0都相交,则实数b的取值范围是(-∞,-6).

分析 求出直线的定点,令该定点在圆内部即可得出b的范围.

解答 解:∵x2+y2-2x-2y+b=0表示圆,
∴$\sqrt{2-b}$>0,即b<2.
∵直线ax+y+a+1=0过定点(-1,-1).
∴点(-1,-1)在圆x2+y2-2x-2y+b=0内部,
∴6+b<0,
解得b<-6.
∴b的范围是(-∞,-6).
故答案为:(-∞,-6).

点评 本题考查了直线与圆的位置关系,圆的一般方程,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{-x}-1,x≤0}\\{-{x}^{2}+x,x>0}\end{array}\right.$则关于x的不等式f(f(x))≤3的解集为(-∞,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数$f(x)=sin(ωx-\frac{π}{3})(ω>0)$,若函数f(x)在区间$(π,\frac{3π}{2})$上为单调递减函数,则实数ω的取值范围是(  )
A.$[\frac{2}{3},\frac{11}{9}]$B.$[\frac{5}{6},\frac{11}{9}]$C.$[\frac{2}{3},\frac{3}{4}]$D.$[\frac{2}{3},\frac{5}{6}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,a=3,b=4,cosB=$\frac{3}{5}$,则sinC=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)已知$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-3,2),当k为何值时,
k$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-3$\overrightarrow{b}$平行?平行时它们是同向还是反向?
(2)设f(θ)=$\frac{2co{s}^{3}θ+si{n}^{2}(2π-θ)+sin(\frac{π}{2}+θ)-3}{2+2si{n}^{2}(\frac{π}{2}+θ)-sin(\frac{3π}{2}-θ)}$,求f($\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若角α的终边落在直线y=2x上,求sin2α-cos2α+sinαcosα的值1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数$f(x)=\left\{\begin{array}{l}x+\frac{2}{e},x<0\\ \frac{x}{e^x},x≥0\end{array}\right.$,若f(x1)=f(x2)=f(x3)(x1<x2<x3),则$\frac{{f({x_2})}}{x_1}$的取值范围为(-1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知数列{an}的前n项和是Sn=(n+2)2+k,当k=-4时,{an}是公差d=2的等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知抛物线方程为y2=4x则焦点到准线的距离为(  )
A.$\frac{1}{8}$B.$\frac{1}{4}$C.1D.2

查看答案和解析>>

同步练习册答案