精英家教网 > 高中数学 > 题目详情
19.已知函数$f(x)=sin(ωx-\frac{π}{3})(ω>0)$,若函数f(x)在区间$(π,\frac{3π}{2})$上为单调递减函数,则实数ω的取值范围是(  )
A.$[\frac{2}{3},\frac{11}{9}]$B.$[\frac{5}{6},\frac{11}{9}]$C.$[\frac{2}{3},\frac{3}{4}]$D.$[\frac{2}{3},\frac{5}{6}]$

分析 根据三角函数的图象和性质求出函数的单调递减区间,建立不等式关系即可得求得实数ω的取值范围.

解答 解:∵函数$f(x)=sin(ωx-\frac{π}{3})(ω>0)$ 在区间$(π,\frac{3π}{2})$上为单调递减函数,
由2kπ+$\frac{π}{2}$≤ωx-$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,
求得$\frac{2kπ}{ω}$+$\frac{5π}{6ω}$≤$\frac{2kπ}{ω}$+$\frac{11π}{6ω}$,
故函数f(x)的减区间为[$\frac{2kπ}{ω}$+$\frac{5π}{6ω}$,$\frac{2kπ}{ω}$+$\frac{11π}{6ω}$],k∈Z.
∵函数f(x)在区间$(π,\frac{3π}{2})$上为单调递减函数,故有$\left\{\begin{array}{l}{π≥\frac{2kπ}{ω}+\frac{5π}{6ω}}\\{\frac{3π}{2}≤\frac{2kπ}{ω}+\frac{11π}{6ω}}\end{array}\right.$,
求得2k+$\frac{5}{6}$≤ω≤$\frac{4k}{3}$+$\frac{11k}{9}$,令k=0,可得$\frac{5}{6}$≤ω≤$\frac{11}{9}$,
故选:B.

点评 本题主要考查三角函数的图象和性质,求出函数的单调递减区间是解决本题的关键,综合性较强,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.△ABC中,AC=4,AB=2,若点G为△ABC的重心,则$\overrightarrow{AG}•\overrightarrow{BC}$=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知点A(1+a,2a),B(1-a,3),直线AB的倾斜角为90°,则a=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知数列{an}满足a1=1,an+1=$\frac{{a}_{n}}{{a}_{n}+2}$(n∈N*),若bn+1=(n-λ)($\frac{1}{{a}_{n}}$+1)(n∈N*),b1=-λ.且数列{bn}是单调递增数列,则实数λ的取值范围为(  )
A.λ>2B.λ<2C.λ>3D.λ<3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若复数z=1+2i,则复数z的模等于(  )
A.$\sqrt{5}$B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知正项等差数列{an}前三项的和等于15,并且这三个数分别加上2,5,13后成为等比数列{bn}中的b1,b2,b3
(1)求数列{an},{bn}的通项公式;
(2)令cn=$\frac{1}{a_n^2-1}+{b_n}$,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设锐角△ABC三个内角A、B、C所对的边分别为a、b、c,若$\sqrt{3}({acosB+bcosA})=2csinC,b=1$,则 c的取值范围为($\frac{\sqrt{3}}{2}$,$\sqrt{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若无论实数a取何值时,直线ax+y+a+1=0与圆x2+y2-2x-2y+b=0都相交,则实数b的取值范围是(-∞,-6).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数y=Asin(ωx+φ)的部分图象如图所示,则f(x)=2sin(2x-$\frac{π}{6}$).

查看答案和解析>>

同步练习册答案