精英家教网 > 高中数学 > 题目详情
11.设锐角△ABC三个内角A、B、C所对的边分别为a、b、c,若$\sqrt{3}({acosB+bcosA})=2csinC,b=1$,则 c的取值范围为($\frac{\sqrt{3}}{2}$,$\sqrt{3}$).

分析 先利用正弦定理把已知等式中的边换成角的正弦,利用两角和公式化简整理可求得sinC,进而可求C,结合已知可求B的范围,可求sinB的范围,利用正弦定理即可解得c的取值范围.

解答 解:∵$\sqrt{3}({acosB+bcosA})=2csinC$,
∴由正弦定理可得:$\sqrt{3}$(sinAcosB+sinBcosA)=2sin2C,
∴$\sqrt{3}$sin(A+B)=$\sqrt{3}$sinC=2sin2C,
∵sinC≠0,
∴解得:sinC=$\frac{\sqrt{3}}{2}$,
∴由C为锐角,可得C=$\frac{π}{3}$,

又在锐角△ABC中,有$\left\{\begin{array}{l}{0<A<\frac{π}{2}}\\{0<B<\frac{π}{2}}\end{array}\right.$,可得:$\left\{\begin{array}{l}{0<B<\frac{π}{2}}\\{0<\frac{2π}{3}-B<\frac{π}{2}}\end{array}\right.$,可得$\frac{π}{6}$$<B<\frac{π}{2}$,
∴sinB∈($\frac{1}{2}$,1),
∵b=1,
∴由正弦定理可得:c=$\frac{bsinC}{sinB}$=$\frac{\frac{\sqrt{3}}{2}}{sinB}$∈($\frac{\sqrt{3}}{2}$,$\sqrt{3}$).
故答案为:($\frac{\sqrt{3}}{2}$,$\sqrt{3}$).

点评 本题主要考查了正弦定理的应用,考查了学生运用所学知识解决问题的能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.递减等差数列{an}的前n项和Sn满足S5=S10,则满足Sn>0成立的最大的正整数n的值为14.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数$f(x)=\left\{{\begin{array}{l}{ln({x+1})({x>0})}\\{\frac{1}{2}x+1({x≤0})}\end{array}}\right.$,如果存在实数s,t,其中s<t,使得f(s)=f(t),则t-s的取值范围是(  )
A.[3-2ln2,2)B.[3-2ln2,e-1]C.[e-1,2]D.[0,e+1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数$f(x)=sin(ωx-\frac{π}{3})(ω>0)$,若函数f(x)在区间$(π,\frac{3π}{2})$上为单调递减函数,则实数ω的取值范围是(  )
A.$[\frac{2}{3},\frac{11}{9}]$B.$[\frac{5}{6},\frac{11}{9}]$C.$[\frac{2}{3},\frac{3}{4}]$D.$[\frac{2}{3},\frac{5}{6}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.经过抛物线$y=\frac{1}{4}x^2$的焦点与圆 x2-4x+y2=0相切的直线方程为(  )
A.225x-64y+4=0或x=0B.3x-4y+4=0
C.x=0D.3x-4y+4=0或x=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,a=3,b=4,cosB=$\frac{3}{5}$,则sinC=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)已知$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-3,2),当k为何值时,
k$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-3$\overrightarrow{b}$平行?平行时它们是同向还是反向?
(2)设f(θ)=$\frac{2co{s}^{3}θ+si{n}^{2}(2π-θ)+sin(\frac{π}{2}+θ)-3}{2+2si{n}^{2}(\frac{π}{2}+θ)-sin(\frac{3π}{2}-θ)}$,求f($\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数$f(x)=\left\{\begin{array}{l}x+\frac{2}{e},x<0\\ \frac{x}{e^x},x≥0\end{array}\right.$,若f(x1)=f(x2)=f(x3)(x1<x2<x3),则$\frac{{f({x_2})}}{x_1}$的取值范围为(-1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设点O为原点,点A,B的坐标分别为(a,0),(0,a),其中a是正的常数,点P在线段AB上,且$\overrightarrow{AP}$=t$\overrightarrow{AB}$(0≤t≤1),则$\overrightarrow{OA}$•$\overrightarrow{OP}$的最大值为a2

查看答案和解析>>

同步练习册答案