| A. | [3-2ln2,2) | B. | [3-2ln2,e-1] | C. | [e-1,2] | D. | [0,e+1) |
分析 由条件可得s=2ln(1+t)-2,0<t≤e-1,t-s=2+t-2ln(1+t),令g(t)=2+t-2ln(1+t),0<t≤e-1,求得导数和单调区间、极值和最值,即可得到所求范围.
解答
解:由s<t,使得f(s)=f(t),
可得$\frac{1}{2}$s+1=ln(1+t),
解得s=2ln(1+t)-2,0<t≤e-1,
可得t-s=2+t-2ln(1+t),
令g(t)=2+t-2ln(1+t),0<t≤e-1,
可得g′(t)=1-$\frac{2}{1+t}$=$\frac{t-1}{1+t}$,
由0<t<1,g(t)递减;1<t<e-1,g(t)递增,
可得g(1)取得极小值且为最小值3-2ln2;
由g(0)=2,g(e-1)=e-1.
综上可得t-s的范围为[3-2ln2,2).
故选:A.
点评 本题考查分段函数的应用:求取值范围,注意运用数形结合和函数的导数,求出函数的单调区间、极值和最值,考查转化思想的运用,属于中档题.
科目:高中数学 来源: 题型:选择题
| x | -1 | 0 | 2 | 4 | 5 |
| f(x) | 1 | 4 | 1.5 | 4 | 1 |
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{21}{2}$ | B. | -$\frac{5}{4}$ | C. | -1 | D. | -$\frac{15}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | λ>2 | B. | λ<2 | C. | λ>3 | D. | λ<3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{43}{4}$ | B. | $\frac{49}{4}$ | C. | $\frac{37}{4}$ | D. | $\frac{37}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com