| A. | λ>2 | B. | λ<2 | C. | λ>3 | D. | λ<3 |
分析 数列{an}满足a1=1,an+1=$\frac{{a}_{n}}{{a}_{n}+2}$(n∈N*),取倒数可得:$\frac{1}{{a}_{n+1}}$=$\frac{2}{{a}_{n}}$+1,变形为$\frac{1}{{a}_{n+1}}$+1=$2(\frac{1}{{a}_{n}}+1)$,利用等比数列的通项公式可得:$\frac{1}{{a}_{n}}$+1,代入bn+1=(n-λ)($\frac{1}{{a}_{n}}$+1),再利用数列的单调性即可得出.
解答 解:数列{an}满足a1=1,an+1=$\frac{{a}_{n}}{{a}_{n}+2}$(n∈N*),取倒数可得:$\frac{1}{{a}_{n+1}}$=$\frac{2}{{a}_{n}}$+1,变形为$\frac{1}{{a}_{n+1}}$+1=$2(\frac{1}{{a}_{n}}+1)$,
∴数列$\{\frac{1}{{a}_{n}}+1\}$是等比数列,首项为2,公比为2.∴$\frac{1}{{a}_{n}}$+1=2n,∴bn+1=(n-λ)($\frac{1}{{a}_{n}}$+1)=(n-λ)•2n,
∵b1=-λ,且数列{bn}是单调递增数列,∴bn+1>bn,
∴(n-λ)•2n>(n-1-λ)•2n-1,化为:λ<n+1.由于数列{n+1}是单调递增数列,∴λ<2.
实数λ的取值范围为(-∞,2).
故选:B.
点评 本题考查了等比数列的定义通项公式、数列递推关系、数列的单调性,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [3-2ln2,2) | B. | [3-2ln2,e-1] | C. | [e-1,2] | D. | [0,e+1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[\frac{2}{3},\frac{11}{9}]$ | B. | $[\frac{5}{6},\frac{11}{9}]$ | C. | $[\frac{2}{3},\frac{3}{4}]$ | D. | $[\frac{2}{3},\frac{5}{6}]$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com