精英家教网 > 高中数学 > 题目详情
4.已知正项等差数列{an}前三项的和等于15,并且这三个数分别加上2,5,13后成为等比数列{bn}中的b1,b2,b3
(1)求数列{an},{bn}的通项公式;
(2)令cn=$\frac{1}{a_n^2-1}+{b_n}$,求数列{cn}的前n项和Sn

分析 (1)根据等差数列的性质列方程解出a2,再根据等比数列的性质列方程求出公差,从而得出数列{an},{bn}的通项公式
(2)分别求出{$\frac{1}{{{a}_{n}}^{2}-1}$}和{bn}的前n项和,即可得出Sn

解答 解:(1)设等差数列{an}的公差为d,
∵a1+a2+a3=3a2=15,∴a2=5,
∴{bn}中的b1,b2,b3依次为7-d,10,18+d,∴(7-d)(18+d)=100,
解得d=2或d=-13(舍去),
∴a1=3,∴an=2n+1,
∵b1=5,b2=10,∴q=2.
∴${b_n}={b_1}•{q^{n-1}}=5•{2^{n-1}}$.
(2)$\frac{1}{(2n+1)^{2}-1}$=$\frac{1}{4n(n+1)}$=$\frac{1}{4}$($\frac{1}{n}-\frac{1}{n+1}$),
∴Sn=$\frac{1}{4}$(1-$\frac{1}{2}$+$\frac{1}{2}-\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$)+$\frac{5(1-{2}^{n})}{1-2}$=$\frac{1}{4}•$$\frac{n}{n+1}$+5(2n-1).

点评 本题考查了等差数列、等比数列的性质,数列求和,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知函数f(x),g(x)满足关系式f(x)=g(|x-1|)(x∈R).若方程f(x)-cosπx=0恰有7个根,则7个根之和为(  )
A.3B.5C.7D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.当x≥3时,不等式$x+\frac{1}{x-1}≥a$恒成立,则实数a的取值范围$({-∞,\frac{7}{2}}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an},{bn}满足:bn=an+1-an(n∈N*).
(1)若a1=1,bn=n,求数列{an}的通项公式;
(2)若bn+1bn-1=bn(n≥2),且b1=1,b2=2.
(i)记cn=a6n-1(n≥1),求证:数列{cn}为等差数列;
(ii)若数列{$\frac{{a}_{n}}{n}$}中任意一项的值均未在该数列中重复出现无数次,求首项a1应满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数$f(x)=sin(ωx-\frac{π}{3})(ω>0)$,若函数f(x)在区间$(π,\frac{3π}{2})$上为单调递减函数,则实数ω的取值范围是(  )
A.$[\frac{2}{3},\frac{11}{9}]$B.$[\frac{5}{6},\frac{11}{9}]$C.$[\frac{2}{3},\frac{3}{4}]$D.$[\frac{2}{3},\frac{5}{6}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设集合A={x|y=ln(1-x)},集合B={y|y=ln(1-x)},则集合(∁RA)∩B=(  )
A.(0,1)B.(-1,0]C.(-∞,1)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,a=3,b=4,cosB=$\frac{3}{5}$,则sinC=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若角α的终边落在直线y=2x上,求sin2α-cos2α+sinαcosα的值1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知m,n为空间中两条不同的直线,α,β为空间中两个不同的平面,下列命题正确的是(  )
A.若n⊥α,n⊥β,m?β则m∥αB.若m⊥α,α⊥β,则m∥β
C.若m,n在γ内的射影互相平行,则m∥nD.若m⊥l,α∩β=l,则m⊥α

查看答案和解析>>

同步练习册答案