分析 由B求出$\frac{x}{y}$的范围,把A化为关于$\frac{x}{y}$的不等式,结合B⊆A,可得关于a的不等式求解.
解答 解:由B={(x,y)|3x-5y≥0,x,y>0}={(x,y)|$\frac{x}{y}≥\frac{5}{3}$},
A═{(x,y)|(1-a)x2+2xy-ay2≤0}={(x,y)|$(1-a)\frac{{x}^{2}}{{y}^{2}}+2\frac{x}{y}-a≤0$},
∵B⊆A,∴$(1-a)×(\frac{5}{3})^{2}+2×\frac{5}{3}-a≤0$,解得a$≥\frac{55}{34}$.
∴实数a的最小值为$\frac{55}{34}$.
故答案为:$\frac{55}{34}$.
点评 本题考查集合的包含关系的判定与应用,考查了数学转化思想方法,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | a<b<c | B. | b<a<c | C. | c<b<a | D. | b<c<a |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {1,3} | B. | {3,27,81} | C. | {1,3,9} | D. | {9,27} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a4•a6=25 | B. | a4•a6≤25 | C. | a4•a6>25 | D. | a4•a6<25 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com