精英家教网 > 高中数学 > 题目详情
5.已知集合A={(x,y)|(1-a)x2+2xy-ay2≤0},B={(x,y)|3x-5y≥0,x,y>0},且B⊆A,则实数a的最小值为$\frac{55}{34}$.

分析 由B求出$\frac{x}{y}$的范围,把A化为关于$\frac{x}{y}$的不等式,结合B⊆A,可得关于a的不等式求解.

解答 解:由B={(x,y)|3x-5y≥0,x,y>0}={(x,y)|$\frac{x}{y}≥\frac{5}{3}$},
A═{(x,y)|(1-a)x2+2xy-ay2≤0}={(x,y)|$(1-a)\frac{{x}^{2}}{{y}^{2}}+2\frac{x}{y}-a≤0$},
∵B⊆A,∴$(1-a)×(\frac{5}{3})^{2}+2×\frac{5}{3}-a≤0$,解得a$≥\frac{55}{34}$.
∴实数a的最小值为$\frac{55}{34}$.
故答案为:$\frac{55}{34}$.

点评 本题考查集合的包含关系的判定与应用,考查了数学转化思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.设a=20.3,b=0.22,c=logx(x2+0.3)(x>1),则a,b,c的大小关系是(  )
A.a<b<cB.b<a<cC.c<b<aD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知A={1,3,9,27,81},B={y|y=log3x,x∈A},则A∩B=(  )
A.{1,3}B.{3,27,81}C.{1,3,9}D.{9,27}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图所示,在四棱锥P-ABCD中,底面ABCD为直角梯形,AB∥CD,∠DAB=90°,PA⊥平面ABCD,且PA=CD=AD=$\frac{1}{2}$AB,M为PB的中点.
(1)证明:平面PAD⊥平面PCD;
(2)求二面角A-MC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.正四棱锥底面边长为a,侧棱长为a,则其表面积为$(\sqrt{3}+1){a}^{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.数列{an}中,${a_n}+{a_{n+2}}=2{a_{n+1}}({n∈{N^*}}),{a_5}=5$,则有(  )
A.a4•a6=25B.a4•a6≤25C.a4•a6>25D.a4•a6<25

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数$f(x)=\frac{x}{lnx}-ax$.
(1)a=1,x>1时,求证:$f(x)•\frac{x-1}{x}<\frac{3-x}{2}$;
(2)求证:$\sum_{k=1}^n{\frac{2}{2k+1}}≤\frac{2}{3}+ln\frac{n+1}{2}\;(n∈N,n≥2)$;
(3)若$?{x_1},{x_2}∈[{e,{e^2}}]$,使f(x1)-f′(x2)≤a成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=lnx-$\frac{a}{x}$.
(1)当a>0时,求f(x)在[e,+∞)上的最小值;
(2)若f(x)在[1,e]上的最小值为$\frac{3}{2}$,求实数a的值;
(3)若f(x)<x2在(1,+∞)上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,E是PC的中点.
(1)证明:PA∥平面EDB;
(2)证明:BC⊥DE.

查看答案和解析>>

同步练习册答案