精英家教网 > 高中数学 > 题目详情
2.如图所示,在四棱锥P-ABCD中,底面ABCD为直角梯形,AB∥CD,∠DAB=90°,PA⊥平面ABCD,且PA=CD=AD=$\frac{1}{2}$AB,M为PB的中点.
(1)证明:平面PAD⊥平面PCD;
(2)求二面角A-MC-B的余弦值.

分析 (1)由已知中PA⊥底面ABCD,CD⊥AD,我们由三垂线定理,得CD⊥PD,结合线面垂直判定定理,可以得到CD⊥平面PAD,进而由面面垂直的判定定理,可以得到面PAD⊥面PCD;
(2)在MC上取一点N(x,y,z),要使AN⊥MC,只需$\overrightarrow{AN}$•$\overrightarrow{MC}$=0,求得N的坐标,即有AN⊥MC,BN⊥MC,进而得到∠ANB为所求二面角A-MC-B的平面角,运用向量夹角公式可得二面角的余弦值.

解答 (1)证明:∵PA⊥底面ABCD,CD⊥AD,
∴由三垂线定理,得CD⊥PD,
∵CD⊥AD,CD⊥PD,且PD∩AD=D,
∴CD⊥平面PAD,
∵CD?平面PCD,
∴面PAD⊥面PCD.
(2)解:设AB=2,PA=CD=AD=1,
以A为坐标原点,AD长为单位长度,如图建立空间直角坐标系,
则各点坐标为A(0,0,0),B(0,2,0),C(1,1,0),M(0,1,$\frac{1}{2}$).
在MC上取一点N(x,y,z),则存在使$\overrightarrow{NC}$=λ$\overrightarrow{MC}$,
$\overrightarrow{NC}$=(1-x,1-y,-z),$\overrightarrow{MC}$=(1,0,-$\frac{1}{2}$),
∴x=1-λ,y=1,z=$\frac{1}{2}$λ.
要使AN⊥MC,只需$\overrightarrow{AN}$•$\overrightarrow{MC}$=0即x-$\frac{1}{2}$z=0,解得λ=$\frac{4}{5}$.
可知当λ=$\frac{4}{5}$时,N点坐标为($\frac{1}{5}$,1,$\frac{2}{5}$),能使$\overrightarrow{AN}$•$\overrightarrow{MC}$=0.
此时,$\overrightarrow{AN}$=($\frac{1}{5}$,1,$\frac{2}{5}$),$\overrightarrow{BN}$=($\frac{1}{5}$,-1,$\frac{2}{5}$),
有$\overrightarrow{BN}$•$\overrightarrow{MC}$=0,
由$\overrightarrow{AN}$•$\overrightarrow{MC}$=0,$\overrightarrow{BN}$•$\overrightarrow{MC}$=0,得AN⊥MC,BN⊥MC.
所以∠ANB为所求二面角A-MC-B的平面角.
|$\overrightarrow{AN}$|=|$\overrightarrow{BN}$|=$\frac{\sqrt{30}}{5}$,$\overrightarrow{AN}$•$\overrightarrow{BN}$=-$\frac{4}{5}$,
∴cos<$\overrightarrow{AN,}$$\overrightarrow{BN}$>=$\frac{\overrightarrow{AN}•\overrightarrow{BN}}{|\overrightarrow{AN}|•|\overrightarrow{BN}|}$=$\frac{-\frac{4}{5}}{\frac{30}{25}}$=-$\frac{2}{3}$,
故所求的二面角的余弦值为-$\frac{2}{3}$.

点评 本题考查空间中的线面垂直和面面垂直的判定定理、二面角、向量等基础知识,考查空间想象能力和思维能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=$\left\{\begin{array}{l}{f(x-4),x>2}\\{{e}^{x},-2≤x≤2}\\{f(-x),x<-2}\end{array}$,则f(-2017)=(  )
A.1B.eC.$\frac{1}{e}$D.e2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在等差数列{an}中,如果a3=4,则a1a5的最大值为(  )
A.2B.4C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为9尺,米堆的高为5尺,米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有(  )
A.14斛B.28斛C.36斛D.66斛

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若抛物线y2=2px(p>0)上的点$({x}_{0},2)({x}_{0}>\frac{p}{2})$到其焦点的距离为$\frac{5}{2}$,则p=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥P-ABCD中,底面ABCD是菱形,且AB=$\sqrt{2}$,∠ABC=60°,点A在平面PBC上的射影为PB的中点O,PB⊥AC.
(1)求证:PC=PD;
(2)求点A到平面PCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知集合A={(x,y)|(1-a)x2+2xy-ay2≤0},B={(x,y)|3x-5y≥0,x,y>0},且B⊆A,则实数a的最小值为$\frac{55}{34}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某少数民族的刺绣有着悠久的历史,图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮;现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.
(Ⅰ)求出f(5)的值;
(Ⅱ)利用合情推理的“归纳推理思想”,归纳出f(n)与f(n-1)之间的关系式,并根据你得到的关系式求出f(n)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,若b2sin2C+c2sin2B=2bccosBcosC,试判断三角形的形状.

查看答案和解析>>

同步练习册答案