精英家教网 > 高中数学 > 题目详情
15.如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,E是PC的中点.
(1)证明:PA∥平面EDB;
(2)证明:BC⊥DE.

分析 (1)连结AC,AC交BD于O,连结EO,证明PA∥EO,然后证明PA∥平面EDB.
(2)证明PD⊥BC,DC⊥BC,推出BC⊥平面PDC.然后证明BC⊥DE.

解答 证明:(1)连结AC,AC交BD于O,连结EO.…(2分)
∵底面ABCD是正方形,∴点O是AC的中点
在△PAC中,EO是中位线,∴PA∥EO       …(4分)
而EO?平面EDB且PA?平面EDB,
所以,PA∥平面EDB                      …(6分)
(2)∵PD⊥底面ABCD且BC?底面ABCD,∴PD⊥BC ①

又∵底面ABCD是正方形,有DC⊥BC         ②
其中PD∩DC=D∴BC⊥平面PDC.    …(10分)
又∵DE?平面PDC,∴BC⊥DE.   …(12分)

点评 本题考查直线与平面平行于垂直的判定定理以及性质定理的应用,考查空间想象能力以及逻辑推理能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知集合A={(x,y)|(1-a)x2+2xy-ay2≤0},B={(x,y)|3x-5y≥0,x,y>0},且B⊆A,则实数a的最小值为$\frac{55}{34}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.运行如图程序框图,若对任意输入的实数x,有f(x)≥a成立,且存在实数x0,使得f(x0)=a成立,则实数a的值为(  )
A.-4B.0C.4D.-4或0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,若b2sin2C+c2sin2B=2bccosBcosC,试判断三角形的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知点F为抛物线y2=4x的焦点,该抛物线上位于第四象限的点A到其准线的距离为5,则直线AF的斜率为-$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若实数a>0,则当2(a+$\frac{1}{a}$)的最小值为m时,不等式m${\;}^{{x^2}+2x-3}}$<1解集为(-3,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$(b-1)x2+b2x(b为常数)在x=1处取得极值,则b的值是0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,角A,B,C的对边分别为a,b,c,已知4sin2$\frac{A+B}{2}$-cos2C=$\frac{7}{2}$,且c=$\sqrt{7}$,
(1)求角C
(2)求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列各组对象中不能构成集合的是(  )
A.蒙中高一(一)班的全体男生B.蒙中全校学生家长的全体
C.李明的所有家人D.王明的所有好朋友

查看答案和解析>>

同步练习册答案