精英家教网 > 高中数学 > 题目详情
4.在△ABC中,角A,B,C的对边分别为a,b,c,已知4sin2$\frac{A+B}{2}$-cos2C=$\frac{7}{2}$,且c=$\sqrt{7}$,
(1)求角C
(2)求△ABC的面积的最大值.

分析 (1)利用二倍角公式,结合C是三角形的内角,可求C;
(2)利用余弦定理,求得ab的最大值,再利用三角形的面积公式,即可求得结论.

解答 解:(1)∵4sin2$\frac{A+B}{2}$-cos2C=$\frac{7}{2}$,
∴2[1-cos(A+B)]-2cos2C+1=$\frac{7}{2}$,
∴2+2cosC-2cos2C=$\frac{5}{2}$,
∴cos2C-cosC+$\frac{1}{4}$=0,
∴cosC=$\frac{1}{2}$,
∵0<C<π,∴C=$\frac{π}{3}$;
(2)由c=$\sqrt{7}$,
由余弦定理得:cosC=$\frac{{a}^{2}+{b}^{2}-7}{2ab}$,
∴ab=a2+b2-7,
∵a2+b2≥2ab(当且仅当a=b取得等号),
∴ab≥2ab-7,即ab≤7,
即有S△ABC=$\frac{1}{2}$absinC≤$\frac{1}{2}$×7×$\frac{\sqrt{3}}{2}$=$\frac{7\sqrt{3}}{4}$.
当a=b时,△ABC的面积的最大值为$\frac{7\sqrt{3}}{4}$.

点评 本题考查二倍角余弦公式的运用,余弦定理和基本不等式的运用,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=lnx-$\frac{a}{x}$.
(1)当a>0时,求f(x)在[e,+∞)上的最小值;
(2)若f(x)在[1,e]上的最小值为$\frac{3}{2}$,求实数a的值;
(3)若f(x)<x2在(1,+∞)上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,E是PC的中点.
(1)证明:PA∥平面EDB;
(2)证明:BC⊥DE.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设△ABC的内角A,B,C所对的边长分别为a,b,c,若acosB-bcosA=$\frac{3}{5}$c,则$\frac{tanA}{tanB}$ 的值为(  )
A.2B.-2C.4D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,角A、B、C所对的边分别为a,b,c,$\sqrt{3}$bcosA=asinB.
(1)求A;
(2)若a=$\sqrt{2}$,$\frac{c}{a}$=$\frac{sinA}{sinB}$,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.《九章算术》第三章“衰分”介绍比例分配问题:“衰分”是按比例递减分配的意思,通常称递减的比例(即百分比)为“衰分比”.如:甲、乙、丙、丁分别分得100,60,36,21.6,递减的比例为40%,那么“衰分比”就等于40%,今共有粮a(a>0)石,按甲、乙、丙、丁的顺序进行“衰分”,已知丙分得36石,乙、丁所得之和为75石,则“衰分比”与a的值分别是(  )
A.75%,$\frac{525}{4}$B.25%,$\frac{525}{4}$C.75%,175D.25%,175

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知PQ是半径为1的圆A的直径,B,C为不同于P,Q的两点,如图所示,记∠PAB=θ.
(1)若BC=$\sqrt{2}$,求四边形PBCQ的面积的最大值;
(2)若BC=1,求$\overrightarrow{BP}$•$\overrightarrow{CQ}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.函数f(x)=x1nx-ax2-x(a∈R).
(I)若函数f(x)在x=1处取得极值,求a的值;
(II)若函数f(x)的图象在直线y=-x图象的下方,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=xlnx-ax2+(2a-1)x,a>0.
( I)设g(x)=f′(x),求g(x)的单调区间;
( II)若f(x)在x=1处取得极大值,求实数a的取值范围.

查看答案和解析>>

同步练习册答案