精英家教网 > 高中数学 > 题目详情
12.设△ABC的内角A,B,C所对的边长分别为a,b,c,若acosB-bcosA=$\frac{3}{5}$c,则$\frac{tanA}{tanB}$ 的值为(  )
A.2B.-2C.4D.-4

分析 先根据正弦定理得到sinAcosB-sinBcosA=$\frac{3}{5}$sinC,再由两角和与差的正弦公式进行化简可得到sinAcosB=4sinBcosA,然后转化为正切的形式可得到答案.

解答 解:由acosB-bcosA=$\frac{3}{5}$c及正弦定理可得
sinAcosB-sinBcosA=$\frac{3}{5}$sinC,即sinAcosB-sinBcosA=$\frac{3}{5}$sin(A+B),
即5(sinAcosB-sinBcosA)=3(sinAcosB+sinBcosA),
即sinAcosB=4sinBcosA,因此tanA=4tanB,
所以$\frac{tanA}{tanB}$=4.
故选:C.

点评 本题主要考查正弦定理的应用和切化弦的基本应用.三角函数的公式比较多,要注意公式的记忆和熟练应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.某少数民族的刺绣有着悠久的历史,图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮;现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.
(Ⅰ)求出f(5)的值;
(Ⅱ)利用合情推理的“归纳推理思想”,归纳出f(n)与f(n-1)之间的关系式,并根据你得到的关系式求出f(n)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,若b2sin2C+c2sin2B=2bccosBcosC,试判断三角形的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若实数a>0,则当2(a+$\frac{1}{a}$)的最小值为m时,不等式m${\;}^{{x^2}+2x-3}}$<1解集为(-3,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$(b-1)x2+b2x(b为常数)在x=1处取得极值,则b的值是0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设数列{an}是等差数列,且a2=-8,a15=5,Sn是数列{an}的前n项和,则不正确的是(  )
A.S10≤S9B.S10<S11C.S10=S9D.S10=S11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,角A,B,C的对边分别为a,b,c,已知4sin2$\frac{A+B}{2}$-cos2C=$\frac{7}{2}$,且c=$\sqrt{7}$,
(1)求角C
(2)求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}的前n项和是Sn,且Sn+$\frac{1}{2}$an=1(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=log3(1-Sn)(n∈N*),求适合方程$\frac{1}{{b}_{2}{b}_{3}}$+$\frac{1}{{b}_{3}{b}_{4}}$+…+$\frac{1}{{b}_{n}{b}_{n+1}}$=$\frac{25}{51}$的n的值..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知两个单位向量${\vec e_1},{\vec e_2}$的夹角为$\frac{π}{3}$,则$|{\vec e_1}-2{\vec e_2}|$=$\sqrt{3}$.

查看答案和解析>>

同步练习册答案