精英家教网 > 高中数学 > 题目详情
13.已知在数列{an}中,$\frac{{a}_{n}}{{a}_{n-1}}$=4(n≥2,且n∈N*),a2=4,则使不等式12an($\sqrt{{a}_{1}}$+$\sqrt{{a}_{2}}$+$\sqrt{{a}_{3}}$+…+$\sqrt{{a}_{n}}$)<2000成立的n的最大值是(  )
A.2B.3C.4D.5

分析 在数列{an}中,$\frac{{a}_{n}}{{a}_{n-1}}$=4(n≥2,且n∈N*),a2=4,$\frac{{a}_{2}}{{a}_{1}}$=4,可得a1=1.利用等比数列的通项公式可得an=4n-1.$\sqrt{{a}_{n}}$=2n-1.12an($\sqrt{{a}_{1}}$+$\sqrt{{a}_{2}}$+$\sqrt{{a}_{3}}$+…+$\sqrt{{a}_{n}}$)=12×4n-1×(1+2+22+…+2n-1)=3×4n(2n-1).不等式12an($\sqrt{{a}_{1}}$+$\sqrt{{a}_{2}}$+$\sqrt{{a}_{3}}$+…+$\sqrt{{a}_{n}}$)<2000,即f(n)=3×4n(2n-1)<2000.通过对n取值即可得出.

解答 解:∵在数列{an}中,$\frac{{a}_{n}}{{a}_{n-1}}$=4(n≥2,且n∈N*),a2=4,
∴$\frac{{a}_{2}}{{a}_{1}}$=4,可得a1=1.
∴数列{an}是等比数列,首项为1,公比为4,
∴an=4n-1
∴$\sqrt{{a}_{n}}$=2n-1
12an($\sqrt{{a}_{1}}$+$\sqrt{{a}_{2}}$+$\sqrt{{a}_{3}}$+…+$\sqrt{{a}_{n}}$)=12×4n-1×(1+2+22+…+2n-1)=12×4n-1×$\frac{{2}^{n}-1}{2-1}$=3×4n(2n-1).
不等式12an($\sqrt{{a}_{1}}$+$\sqrt{{a}_{2}}$+$\sqrt{{a}_{3}}$+…+$\sqrt{{a}_{n}}$)<2000,即f(n)=3×4n(2n-1)<2000.
f(3)=3×43×7=1344<2000,f(4)=3×44×15=11520>2000.
因此使不等式12an($\sqrt{{a}_{1}}$+$\sqrt{{a}_{2}}$+$\sqrt{{a}_{3}}$+…+$\sqrt{{a}_{n}}$)<2000成立的n的最大值为3.
故选:B.

点评 本题考查了等比数列的定义与通项公式求和公式、数列递推关系、不等式的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.i是虚数单位,若Z(1+i)=i,则|Z|=(  )
A.1B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在平面直角坐标系xOy中,P为双曲线x2-y2=1右支上的一个动点.若点P到直线x-y+1=0 的距离大于m恒成立,则实数 m的最大值为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某校高三(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题.

(1)求全班人数及分数在[80,90)之间的频数,并估计该班的平均分数;
(2)若要从分数在[80,100]之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在[90,100]之间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.圆x2+(y-a)2=9与椭圆$\frac{x^2}{25}+\frac{y^2}{9}=1$有公共点,则实数a的取值范围是[-6,6].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(1)等比数列{an}中,${a_3}=\frac{3}{2},{S_3}=\frac{9}{2}$,求公比q的值.
(2)已知数列{an}中,${S_n}={n^2}$,求数列{an}通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知圆O:x2+y2=4,圆O1:(x-3)2+y2=1,过x轴的正半轴上一点M引圆O1的切线,切点为A,同时切线交圆O于B,C两点,且AB=BC,则点M的坐标是(7,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.不等式1<|x+1|<3的解集为(-4,-2)∪(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知等比数列{an}中,a2=2,a5=$\frac{1}{4}$,则a1a2+a2a3+…+anan+1=(  )
A.$\frac{32}{3}$(1-$\frac{1}{{4}^{n}}$)B.$\frac{32}{3}$(1-$\frac{1}{{2}^{n}}$)C.16(1-$\frac{1}{{4}^{n}}$)D.16(1-$\frac{1}{{2}^{n}}$)

查看答案和解析>>

同步练习册答案