精英家教网 > 高中数学 > 题目详情
3.i是虚数单位,若Z(1+i)=i,则|Z|=(  )
A.1B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{1}{2}$

分析 把已知等式变形,利用复数代数形式的乘除运算化简求得Z,代入模的公式求得答案.

解答 解:由Z(1+i)=i,得Z=$\frac{i}{1+i}=\frac{i(1-i)}{(1+i)(1-i)}=\frac{1}{2}+\frac{i}{2}$,
∴|Z|=$\sqrt{(\frac{1}{2})^{2}+(\frac{1}{2})^{2}}=\frac{\sqrt{2}}{2}$.
故选:C.

点评 本题考查复数代数形式的乘除运算,考查了复数模的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.(1)证明:若实数a,b,c成等比数列,n为正整数,则an,bn,cn也成等比数列;
(2)设z1,z2均为复数,若z1=1+i,z2=2-i,则$|{{z_1}•{z_2}}|=\sqrt{2}×\sqrt{5}=\sqrt{10}$;若z1=3-4i,z2=4+3i,则|z1•z2|=5×5=25;若${z_1}=\frac{1}{2}-\frac{{\sqrt{3}}}{2}$,${z_2}=-\frac{{\sqrt{2}}}{2}+\frac{{\sqrt{2}}}{2}i$,则|z1•z2|=1×1=1.通过这三个小结论,请归纳出一个结论,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知正项数列{an}的前n项和为Sn,当n≥2时,(an-Sn-12=SnSn-1,且a1=1,设b${\;}_{n}=lo{g}_{2}\frac{{a}_{n+1}}{6}$,则b1+b2+…+b10等于(  )
A.64B.72C.80D.90

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如果关于x的不等式|x-3|+|x-4|<a的解集不是空集,则参数a的取值范围是(  )
A.(-∞,1)B.(1,+∞)C.[1,+∞)D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=ax3+$\frac{1}{2}$x2,在x=-1处取得极大值,记g(x)=$\frac{1}{f′(x)}$,程序框图如图所示,若输出的结果$S>\frac{2016}{2017}$,则判断框中可以填入的关于n的判断条件是(  )
A.n≤2016?B.n≤2017?C.n>2016?D.n>2017?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知等差数列{an}满足a1+a2=5,a2+a3=7,则a2016=(  )
A.2016B.2017C.2018D.2019

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在△ABC中,内角A、B、C所对的边分别是a、b、c,$B=\frac{π}{3}$,a=2.
(Ⅰ)若$A=\frac{π}{4}$,求c;
(Ⅱ)若△ABC的面积为$\frac{3\sqrt{3}}{2}$,求b.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.为了了解培训讲座对某工厂工人生产时间(生产一个零件所用的时间,单位:分钟)的影响.从工厂随机选取了200名工人,再将这200名工人随机的分成A,B两组,每组100人.A组参加培训讲座,B组不参加.培训讲座结束后A,B两组中各工人的生产时间的调查结果分别为表1和表2.
                                                                                   表1:
生产时间[60,65)[65,70)[70,75)[75,80)
人数30402010
表2
生产时间[60,65)[65,70)[70,75)[75,80)[80,85)
人数1025203015
(1)甲、乙两名工人是随机抽取到的200名工人中的两人,求甲、乙分在不同组的概率;
(2)完成图3的频率分布直方图,比较两组的生产时间的中位数的大小和两组工人中个体间的差异程度的大小;(不用计算,可通过直方图直接回答结论)

(3)完成下面2×2列联表,并回答能否有99.9%的把握认为“工人的生产时间”与参加培训讲座有关?
生产时间小于70分钟生产时间不小于70分钟合计
A组工人a=b=
B组工人c=d=
合计n=
下面临界值表仅供参考:
P(K2≥k00.150.100.050.0250.010.0050.001
k02.0722.7063.8415.0246.6357.87910.828
${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知在数列{an}中,$\frac{{a}_{n}}{{a}_{n-1}}$=4(n≥2,且n∈N*),a2=4,则使不等式12an($\sqrt{{a}_{1}}$+$\sqrt{{a}_{2}}$+$\sqrt{{a}_{3}}$+…+$\sqrt{{a}_{n}}$)<2000成立的n的最大值是(  )
A.2B.3C.4D.5

查看答案和解析>>

同步练习册答案