精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=ax3+$\frac{1}{2}$x2,在x=-1处取得极大值,记g(x)=$\frac{1}{f′(x)}$,程序框图如图所示,若输出的结果$S>\frac{2016}{2017}$,则判断框中可以填入的关于n的判断条件是(  )
A.n≤2016?B.n≤2017?C.n>2016?D.n>2017?

分析 根据已知中的程序框图可得,该程序的功能是计算并输出变量S的值,模拟程序的运行过程,可得答案.

解答 解:函数f(x)=ax3+$\frac{1}{2}$x2,在x=-1处取得极大值,
即f′(x)=3ax2+x的零点为-1,
即 3a-a=0,解得:a=$\frac{1}{3}$,
故f′(x)=x2+x,
故g(x)=$\frac{1}{f′(x)}$=$\frac{1}{x}$$-\frac{1}{x+1}$,
则S=g(1)+g(2)+g(3)+…+g(k)=1$-\frac{1}{k+1}$=$\frac{k}{k+1}$,
若输出的结果$S>\frac{2016}{2017}$,则k>2017,
故进行循环的条件应为n≤2017?,
故选:B.

点评 本题以程序框图为载体,考查了函数在某点取得极值的条件,数列求和,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.( I)若直线l:(a+1)x+y+2-a=0(a∈R)的横截距是纵截距的2倍,求直线l的方程;
( II)过点P(0,3)作直线l与圆C:x2+y2-2x-4y-6=0交于A,B两点,且OA⊥OB(O为坐标原点),求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知公比为2的等比数列{an}的前n项和为Sn,则$\frac{{S}_{3}}{{a}_{1}+{a}_{4}}$等于(  )
A.$\frac{1}{2}$B.$\frac{5}{7}$C.$\frac{2}{3}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.数列{an}的前n项和为Sn,若Sn+Sn-1=2n-l (n>2),且S2=3,则a3的值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若点(a,81)在函数y=3x的图象上,则$tan\frac{aπ}{6}$的值为-$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.i是虚数单位,若Z(1+i)=i,则|Z|=(  )
A.1B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在平面直角坐标系中,直线l:3x-y-6=0与圆C:x2+y2-2x+4y=0的位置关系是(  )
A.相离B.相切
C.直线与圆相交但不经过圆心D.直线经过圆心

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若向量$\overrightarrow a$,$\overrightarrow b$满足:$|{\overrightarrow a}|=1$,$({\overrightarrow a+\overrightarrow b})⊥\overrightarrow a$,$({2\overrightarrow a+\overrightarrow b})⊥\overrightarrow b$,则$\overrightarrow a$,$\overrightarrow b$的夹角为(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{π}{4}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.圆x2+(y-a)2=9与椭圆$\frac{x^2}{25}+\frac{y^2}{9}=1$有公共点,则实数a的取值范围是[-6,6].

查看答案和解析>>

同步练习册答案