精英家教网 > 高中数学 > 题目详情
6.数列{an}的前n项和为Sn,若Sn+Sn-1=2n-l (n>2),且S2=3,则a3的值为-1.

分析 依题意,可得S3+S2=2×3-l=5,即a3+2S2=5,再结合已知S2=3,即可求得a3的值.

解答 解:∵Sn+Sn-1=2n-l (n>2),
∴S3+S2=2×3-l=5,又S2=3,
∴a3+2S2=5,
∴a3=5-2S2=-1.
故答案为:-1.

点评 本题考查数列递推式的应用,考查转化思想与运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知数列{an}的前n项和${S_n}={n^2}+{a_n}-1$,且a1,a4是等比数列{bn}的前两项,记bn与bn+1之间包含的数列{an}的项数为cn,如b1与b2之间包含{an}中的项为a2,a3,则c1=2.
(1)求数列{an}和{bn}的通项公式;
(2)求数列{ancn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知向量$\overrightarrow{a}$=(2,m),$\overrightarrow{b}$=(1,-2)若$\overrightarrow{a}$•($\overrightarrow{a}$-2$\overrightarrow{b}$)=$\overrightarrow{b}$2+m2,则实数m等于(  )
A.$\frac{1}{2}$B.$\frac{5}{2}$C.$\frac{\sqrt{5}}{4}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知正项数列{an}的前n项和为Sn,当n≥2时,(an-Sn-12=SnSn-1,且a1=1,设b${\;}_{n}=lo{g}_{2}\frac{{a}_{n+1}}{6}$,则b1+b2+…+b10等于(  )
A.64B.72C.80D.90

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若数列{an}满足an=3an-1+2(n≥2,n∈N*),a1=1,则数列{an}的通项公式为an=2×3n-1-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如果关于x的不等式|x-3|+|x-4|<a的解集不是空集,则参数a的取值范围是(  )
A.(-∞,1)B.(1,+∞)C.[1,+∞)D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=ax3+$\frac{1}{2}$x2,在x=-1处取得极大值,记g(x)=$\frac{1}{f′(x)}$,程序框图如图所示,若输出的结果$S>\frac{2016}{2017}$,则判断框中可以填入的关于n的判断条件是(  )
A.n≤2016?B.n≤2017?C.n>2016?D.n>2017?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在△ABC中,内角A、B、C所对的边分别是a、b、c,$B=\frac{π}{3}$,a=2.
(Ⅰ)若$A=\frac{π}{4}$,求c;
(Ⅱ)若△ABC的面积为$\frac{3\sqrt{3}}{2}$,求b.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知向量$\overrightarrow a=({-2,m}),\overrightarrow b=({3,n})$,若向量$({2\overrightarrow a-\overrightarrow b})$与$\overrightarrow a$共线,且m+n=1,则,$\overrightarrow a•\overrightarrow b$=-12.

查看答案和解析>>

同步练习册答案