精英家教网 > 高中数学 > 题目详情
17.已知向量$\overrightarrow{a}$=(2,m),$\overrightarrow{b}$=(1,-2)若$\overrightarrow{a}$•($\overrightarrow{a}$-2$\overrightarrow{b}$)=$\overrightarrow{b}$2+m2,则实数m等于(  )
A.$\frac{1}{2}$B.$\frac{5}{2}$C.$\frac{\sqrt{5}}{4}$D.$\frac{5}{4}$

分析 利用向量坐标运算性质、数量积运算性质即可得出.

解答 解:∵$\overrightarrow{a}$-2$\overrightarrow{b}$=(0,m+4),$\overrightarrow{a}$•($\overrightarrow{a}$-2$\overrightarrow{b}$)=$\overrightarrow{b}$2+m2
则m2+4m=5+m2,解得m=$\frac{5}{4}$.
故选:D.

点评 本题考查了向量坐标运算性质、数量积运算性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.下列所示的四幅图中,是函数图象的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.( I)若直线l:(a+1)x+y+2-a=0(a∈R)的横截距是纵截距的2倍,求直线l的方程;
( II)过点P(0,3)作直线l与圆C:x2+y2-2x-4y-6=0交于A,B两点,且OA⊥OB(O为坐标原点),求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若抛物线y2=2px(p>0)上的点$A({x}_{0},\sqrt{2})$到其焦点的距离是A到y轴距离的3倍,则P=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(1)当x>0时,求证:2-$\frac{e}{x}≤lnx≤\frac{x}{e}$;
(2)当函数y=ax(a>1)与函数y=x有且仅有一个交点,求a的值;
(3)讨论函数y=a|x|-|x|(a>0且a≠1)y=a的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数$f(x)=\left\{\begin{array}{l}{-2,0<x<1}\\{1,x≥1}\end{array}\right.$则不等式$lo{g}_{2}x-(lo{g}_{\frac{1}{4}}4x-1)f(lo{g}_{3}x+1)≤5$的解集为(  )
A.($\frac{1}{3}$,1)B.[1,4]C.($\frac{1}{3}$,4]D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知公比为2的等比数列{an}的前n项和为Sn,则$\frac{{S}_{3}}{{a}_{1}+{a}_{4}}$等于(  )
A.$\frac{1}{2}$B.$\frac{5}{7}$C.$\frac{2}{3}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.数列{an}的前n项和为Sn,若Sn+Sn-1=2n-l (n>2),且S2=3,则a3的值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若向量$\overrightarrow a$,$\overrightarrow b$满足:$|{\overrightarrow a}|=1$,$({\overrightarrow a+\overrightarrow b})⊥\overrightarrow a$,$({2\overrightarrow a+\overrightarrow b})⊥\overrightarrow b$,则$\overrightarrow a$,$\overrightarrow b$的夹角为(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{π}{4}$D.$\frac{3π}{4}$

查看答案和解析>>

同步练习册答案