精英家教网 > 高中数学 > 题目详情
8.( I)若直线l:(a+1)x+y+2-a=0(a∈R)的横截距是纵截距的2倍,求直线l的方程;
( II)过点P(0,3)作直线l与圆C:x2+y2-2x-4y-6=0交于A,B两点,且OA⊥OB(O为坐标原点),求直线l的方程.

分析 ( I)依题意,直线l的横、纵截距均存在,结合横截距是纵截距的2倍,求出a值,可得直线l的方程;
( II)依题意,直线的斜率必存在,故可设直线l:y=kx+3,联立直线与圆C:x2+y2-2x-4y-6=0方程,由OA⊥OB结合韦达定理,可得k值,进而得到直线l的方程.

解答 解:( I)依题意,直线l的横、纵截距均存在,
所以a≠-1,
∴令x=0,得直线l的纵截距y=a-2,
令y=0,得直线l的横截距$x=\frac{a-2}{a+1}$…(2分)
①当a=2时,直线l的横、纵截距均为0,满足横截距是纵截距的2倍,
此时,直线l过原点且方程为:3x+y=0…(3分)
②当a≠2时,直线l的横、纵截距均不为0∴依题意有:$\frac{a-2}{a+1}=2(a-2)$,
解得$a=-\frac{1}{2}$…(4分)∴此时直线l的方程为:x+2y+5=0…(5分)∴综上述,直线l的方程为:3x+y=0或x+2y+5=0…(6分)
( II)依题意,直线的斜率必存在,故可设直线l:y=kx+3,
联立$\left\{\begin{array}{l}y=kx+3\\{x^2}+{y^2}-2x-4y-6=0\end{array}\right.$,
消y得:(1+k2)x2+2(k-1)x-9=0,
∴△=4(k-1)2+36(1+k2)>0恒成立,
设A(x1,y1),B(x2,y2),则${x_1}+{x_2}=-\frac{2(k-1)}{{1+{k^2}}},{x_1}{x_2}=\frac{-9}{{1+{k^2}}}$…(8分)
∴${y_1}{y_2}=(k{x_1}+3)(k{x_2}+3)={k^2}{x_1}{x_2}+3k({x_1}+{x_2})+9$,
又OA⊥OB,即$\overrightarrow{OA}⊥\overrightarrow{OB}$,
∴$\overrightarrow{OA}•\overrightarrow{OB}={x_1}{x_2}+{y_1}{y_2}=({k^2}+1){x_1}{x_2}+3k({x_1}+{x_2})+9=-\frac{6k(k-1)}{{1+{k^2}}}=0$…(10分)
∴k=0或k=1…(11分)
∴直线l的方程为:y=3或x-y+3=0.…(12分)

点评 本题考查的知识点是直线的方程,直线与圆的位置关系,向量的数量积公式,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知集合A={x|x<-1或x≥1},B={x|2a<x≤a+1,a<1},A∪B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.《莱因德纸草书》(Rhind Papyrus)是世界上最古老的数学著作之一,书中有这样一道题:把120个面包分成5份,使每份的面包数成等差数列,且较多的三份之和恰好是较少的两份之和的7倍,则最多的那份有面包(  )
A.43个B.45个C.46个D.48个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}的前n项和${S_n}={n^2}+{a_n}-1$,且a1,a4是等比数列{bn}的前两项,记bn与bn+1之间包含的数列{an}的项数为cn,如b1与b2之间包含{an}中的项为a2,a3,则c1=2.
(1)求数列{an}和{bn}的通项公式;
(2)求数列{ancn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,角A,B,C的对边分别为a,b,c,若3cos(B-C)-2=6cosBcosC.
(1)求cosA的值;
(2)若a=$\sqrt{5}$,△ABC的面积为$\sqrt{5}$,求b,c边长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)证明:若实数a,b,c成等比数列,n为正整数,则an,bn,cn也成等比数列;
(2)设z1,z2均为复数,若z1=1+i,z2=2-i,则$|{{z_1}•{z_2}}|=\sqrt{2}×\sqrt{5}=\sqrt{10}$;若z1=3-4i,z2=4+3i,则|z1•z2|=5×5=25;若${z_1}=\frac{1}{2}-\frac{{\sqrt{3}}}{2}$,${z_2}=-\frac{{\sqrt{2}}}{2}+\frac{{\sqrt{2}}}{2}i$,则|z1•z2|=1×1=1.通过这三个小结论,请归纳出一个结论,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知曲线f(x)=x2+a在点(1,f(1))处切线的斜率等于f(2),则实数a值为(  )
A.-2B.-1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知向量$\overrightarrow{a}$=(2,m),$\overrightarrow{b}$=(1,-2)若$\overrightarrow{a}$•($\overrightarrow{a}$-2$\overrightarrow{b}$)=$\overrightarrow{b}$2+m2,则实数m等于(  )
A.$\frac{1}{2}$B.$\frac{5}{2}$C.$\frac{\sqrt{5}}{4}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=ax3+$\frac{1}{2}$x2,在x=-1处取得极大值,记g(x)=$\frac{1}{f′(x)}$,程序框图如图所示,若输出的结果$S>\frac{2016}{2017}$,则判断框中可以填入的关于n的判断条件是(  )
A.n≤2016?B.n≤2017?C.n>2016?D.n>2017?

查看答案和解析>>

同步练习册答案