【题目】设抛物线的焦点为,准线为.已知点在抛物线上,点在上, 是边长为4的等边三角形.
(1)求的值;
(2)在轴上是否存在一点,当过点的直线与抛物线交于、两点时, 为定值?若存在,求出点的坐标,若不存在,请说明理由.
【答案】(1);(2).
【解析】试题分析:(1)由题知, ,则.设准线与轴交于点,则.又是边长为4的等边三角形, ,所以, ,从而可得结果;(2)设点,由题意知直线的斜率不为零,设直线的方程为,
由得, ,由韦达定理及两点间距离公式可得,同理可得,化简即可得, 时为定值,此时点为定点.
试题解析:(1)由题知, ,则.设准线与轴交于点,则.又是边长为4的等边三角形, ,所以, ,即.
(2)设点,由题意知直线的斜率不为零,
设直线的方程为,点, ,
由得, ,则, , .
又,同理可得,则有 .
若为定值,则,此时点为定点.
又当, 时, ,
所以,存在点,当过点的直线与抛物线交于、两点时, 为定值.
科目:高中数学 来源: 题型:
【题目】已知椭圆的焦距为,其短轴的两个端点与长轴的一个端点构成正三角形.
(Ⅰ)求椭圆的标准方程和长轴长;
(Ⅱ)设为椭圆的左焦点, 为直线上任意一点,过点作直线的垂线交椭圆于,记分别为点和到直线的距离,证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,以原点为极点,以轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为:.
(1)若曲线的参数方程为(为参数),求曲线的直角坐标方程和曲线的普通方程;
(2)若曲线的参数方程为(为参数),,且曲线与曲线的交点分别为、,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学用“五点法”画函数在某一个周期内的图象时,列表并填入了部分数据,如下表:
0 | |||||
0 | 2 | 0 | 0 |
(1)请将上表数据补充完整,填写在相应位置,并求出函数的解析式;
(2)把的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位长度,得到函数的图象,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在贯彻中共中央国务院关于精准扶贫政策的过程中,某单位定点帮扶甲、乙两个村各50户贫困户.为了做到精准帮扶,工作组对这100户村民的年收入情况、劳动能力情况、子女受教育情况、危旧房情况、患病情况等进行调查,并把调查结果转化为各户的贫困指标和,制成下图,其中“”表示甲村贫困户,“”表示乙村贫困户.若,则认定该户为“绝对贫困户”,若,则认定该户为“相对贫困户”,若,则认定该户为“低收入户”;若,则认定该户为“今年能脱贫户”,否则为“今年不能脱贫户”.
(1)从乙村的50户中随机选出一户,求该户为“绝对贫困户”的概率;
(2)从甲村所有“今年不能脱贫的非绝对贫困户”中任选2户,求选出的2户均为“低收入户”的概率;
(3)试比较这100户中,甲、乙两村指标的方差的大小(只需写出结论).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了全面贯彻党的教育方针,坚持以人文本、德育为先,全面推进素质教育,让学生接触自然,了解社会,拓宽视野,丰富知识,提高社会实践能力和综合素质,减轻学生过重负担,培养学生兴趣爱好,丰富学生的课余生活,使广大学生在社会实践中,提高创新精神和实践能力,树立学生社会责任感,因此学校鼓励学生利用课余时间参加社会活动实践。寒假归来,某校高三(2)班班主任收集了所有学生参加社会活动信息,整理出如图所示的图。
(1)求高三(2)班同学人均参加社会活动的次数;
(2)求班上的小明同学仅参加1次社会活动的概率;
(3)用分层抽样的方法从班上参加活动2次及以上
的同学中抽取一个容量为5的样本,从这5人中任选3人,其中仅有两人参加2次活动的概率。.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义域为的函数是奇函数.
(1) 求实数的值;
(2) 判断并用定义证明该函数在定义域上的单调性;
(3) 若方程在内有解,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱ABCA1B1C1中,BC=BB1,∠BAC=∠BCA=∠ABC,点E是A1B与AB1的交点,点D在线段AC上,B1C∥平面A1BD.
(1)求证:BD⊥A1C;
(2)求证:AB1⊥平面A1BC。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】假设关于某种设备的使用年限(年)与所支出的维修费用 (万元)有如下统计:
2 | 3 | 4 | 5 | 6 | |
2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
已知, . ,
(1)求, ;
(2)与具有线性相关关系,求出线性回归方程;
(3)估计使用年限为10年时,维修费用约是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com