【题目】为了全面贯彻党的教育方针,坚持以人文本、德育为先,全面推进素质教育,让学生接触自然,了解社会,拓宽视野,丰富知识,提高社会实践能力和综合素质,减轻学生过重负担,培养学生兴趣爱好,丰富学生的课余生活,使广大学生在社会实践中,提高创新精神和实践能力,树立学生社会责任感,因此学校鼓励学生利用课余时间参加社会活动实践。寒假归来,某校高三(2)班班主任收集了所有学生参加社会活动信息,整理出如图所示的图。
(1)求高三(2)班同学人均参加社会活动的次数;
(2)求班上的小明同学仅参加1次社会活动的概率;
(3)用分层抽样的方法从班上参加活动2次及以上
的同学中抽取一个容量为5的样本,从这5人中任选3人,其中仅有两人参加2次活动的概率。.
【答案】(1);(2);(3)
【解析】试题分析:
(1)结合统计图和平均数的计算方法求解.(2)根据古典概型概率公式求解即可.(3)由分层抽样的方法可得在参加2次活动的人中抽取3人,在参加3次和4次活动的人中个抽取1人,分别列出从5人中选3人的所有可能情况,根据古典概型概率公式求解即可.
试题解析:
(1)由题意得,
即高三(2)班同学人均参加社会活动的次数为次.
(2)由题意得参加1次的有10人,班上共有40人,
所以所求概率为.
(3)由分层抽样的方法可得在参加2次活动的人中抽取3人,分别记为;在参加3次和4次活动的人中个抽取1人,分别记为.
则从5人中任选3人的所有可能结果为, ,共10中,
其中仅有两人参加2次活动的情况有,
,共有6种,
故所求概率为.
科目:高中数学 来源: 题型:
【题目】某社会研究机构,为了研究大学生的阅读习惯,随机调查某大学40名不同性别的大学生在购买食物时是否读营养说明,其中男女各一半,男生中有表示会读,女生中有表示不会读.
(1)根据调查结果,得到如下2╳2列联表:
男 | 女 | 总计 | |
读营养说明 | |||
不读营养说明 | |||
总计 |
(2)根据以上列联表,进行独立性检验,能否在犯错误的概率不超过0.01的前提下认为性别与是否读营养说明之间有关系?
P(K2≥k) | 0.10 | 0.025 | 0.010 | 0.005 |
k | 2.706 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的前项和,数列是正项等比数列,且,.
(1)求数列和的通项公式;
(2)记,是否存在正整数,使得对一切,都有成立?若存在,求出M的最小值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设抛物线的焦点为,准线为.已知点在抛物线上,点在上, 是边长为4的等边三角形.
(1)求的值;
(2)在轴上是否存在一点,当过点的直线与抛物线交于、两点时, 为定值?若存在,求出点的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆与直线y=x-2相切,设椭圆的上顶点为M, 是椭圆的左右焦点,且⊿M为等腰直角三角形。(1)求椭圆的标准方程;(2)直线l过点N(0,-)交椭圆于A,B两点,直线MA、MB分别与椭圆的短轴为直径的圆交于S,T两点,求证:O、S、T三点共线。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ln(x+1)-mx(mR)。(1)若m>0,讨论f(x)的单调性;(2)令g(x)=f(x-1)+(2m+1)x+n,若g(x)有两个零点,,求证: <
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解人们对“延迟退休年龄政策”的态度,某部门从年龄在岁到岁的人群中随机调查了人,并得到如图所示的频率分布直方图,在这人中不支持“延迟退休年龄政策”的人数与年龄的统计结果如图所示:
年龄 | 不支持“延迟退休年龄政策”的人数 |
(1)由频率分布直方图,估计这人年龄的平均数;
(2)根据以上统计数据填写下面的列联表,据此表,能否在犯错误的概率不超过的前提下,认为以岁为分界点的不同人群对“延迟退休年龄政策”的态度存在差异?
45岁以下 | 45岁以上 | 总计 | |
不支持 | |||
支持 | |||
总计 |
附:
参考数据:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com