精英家教网 > 高中数学 > 题目详情
15.设函数f(x)=lnx+$\frac{a}{x}$(a∈R)
(1)若0<x≤3时,函数f(x)图象上任意一点P(x0,y0)处切线的斜率k$≤\frac{1}{2}$恒成立,求实数a的取值范围.
(2)当a=0时,方程f(x)=x(m-1)在区间[1,e2]内有唯一实数解,求实数m的取值范围.

分析 (1)求导函数,条件转化为a≥-$\frac{1}{2}$x2+x,x∈(0,3]恒成立,分离参数求最值,即可得出结论;
(2)分别求出直线y=(m-1)x过原点和A(1,0)的斜率以及过原点和B的斜率,从而求出m的范围即可.

解答 解:(1)∵函数f(x)=lnx+$\frac{a}{x}$,
∴f′(x)=$\frac{1}{x}$-$\frac{a}{{x}^{2}}$,
∵y=f(x)图象上任意一点的切线的斜率k≤$\frac{1}{2}$恒成立,
∴$\frac{1}{x}$-$\frac{a}{{x}^{2}}$≤$\frac{1}{2}$,x∈(0,3]恒成立,
∴a≥-$\frac{1}{2}$x2+x,x∈(0,3]恒成立,
由 y=-$\frac{1}{2}$x2+x=-$\frac{1}{2}$(x-1)2+$\frac{1}{2}$,可知x=1时,函数值为$\frac{1}{2}$,
∴a≥$\frac{1}{2}$,
∴实数a的取值范围是[$\frac{1}{2}$,+∞).
(2)a=0时,f(x)=lnx,
x=1时,f(x)=0,x=e2时,f(x)=2,
f(x)过A(1,0),B(e2,2),
由m-1=0,解得:m=1,
由m-1=$\frac{2}{{e}^{2}}$,解得:m=$\frac{{e}^{2}+2}{{e}^{2}}$,
∴m∈[1,$\frac{{e}^{2}+2}{{e}^{2}}$).

点评 题考查了导数的几何意义,函数在图象上某点处的切线的斜率就是在该点处的导数值,考查了利用分离变量法求参数的取值范围,此题是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知x与y之间的一组数据:则y与x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$必过点(  )
x01234
y13579
A.(1,2)B.(5,2)C.(2,5)D.(2.5,5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设复数z=2+i,则复数z(1-z)的共轭复数为(  )
A.-1-3iB.-1+3iC.1+3iD.1-3i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设全集U=R,集合A={x|-4<x<1},B={x|4${\;}^{x+\frac{1}{2}}$>$\frac{1}{8}$},则图中阴影部分所表示的集合为(  )
A.(-2,1]B.(1,+∞)C.(-∞,-4]D.(-∞,-4]∪(-2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10. 某社区为调查当前居民的睡眠状况,从该社区的[10,70]岁的人群中随机抽取n人进行一次日平均睡眠时间调查,这n人中各年龄组人数的频率分布直方图如图1所示,统计各年龄组的“亚健康族”(日平均睡眠时间符合健康标准的称为“健康族”否则称为“亚健康族”)人数及相应频率,得到统计表如图所示
组数分组亚健康族的人数占本组的频率
第一组[10,20)1000.5
第二组[20,30)195P
第三组[30,40)1200.6
第四组[40,50)a0.4
第五组[50,60)300.3
第六组[60,70]150.3
(1)求n、p的值;
(2)用分层抽样的方法从年龄在[30,50)岁的“亚健康族”中抽取6人参加健康睡眠体验活动,现从6人中随机选取2人担任领队,记年龄在[40,50)岁的领队有X人,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=x|x-a|(a∈R).
(1)当a=2时,写出f(x)的单调递减区间(不需要证明);
(2)当x∈[0,1]时,f(x)的最大值为$\frac{{a}^{2}}{4}$,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.曲线y=$\sqrt{x}$在[0,1]上围绕x轴旋转一周,形成的几何体体积为(  )
A.$\frac{π}{2}$B.$\frac{1}{2}$C.$\frac{2π}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知A={x∈R|x2-2x-8=0},B={x∈R|x2+ax+a2-12=0},B⊆A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知$\frac{si{n}^{2}θ+4}{cosθ+1}$=2,则(cosθ+3)(sinθ+1)的值为(  )
A.2B.3C.4D.5

查看答案和解析>>

同步练习册答案