分析 解一元二次方程求得集合A,由题意可分B=∅和B≠∅两种情况,分别求出实数a的取值范围,再取并集即得所求.
解答 解:A={x|x2-2x-8=0}={x|(x-4)(x+2)=0}={-2,4},B⊆A,
当B=∅时,△=a2-4(a2-12)<0,解得 a>4或 a<-4.
当B≠∅时,若B中仅有一个元素,则,△=a2-4(a2-12)=0,解得 a=±4,
当a=4时,B={-2},满足条件;当a=-4时,B={2},不满足条件.
当B中有两个元素时,B=A,可得a=-2,且 a2-12=-8,故有a=-2 满足条件.
综上可得,实数a的取值集合为{a|a<-4,或 a≥4,或 a=-2 }.
点评 本题考查集合的关系,考查分类讨论的数学思想,考查学生的计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2${A}_{4}^{4}$ | B. | ${A}_{4}^{4}$•${A}_{3}^{3}$ | C. | ${A}_{4}^{4}$•${A}_{4}^{4}$ | D. | ${A}_{8}^{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{4}$ | B. | $\frac{π}{2}$ | C. | $\frac{2π}{3}$ | D. | $\frac{3π}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com