精英家教网 > 高中数学 > 题目详情
若数列{an}与{bn}满足bn+1an+bnan+1=(-1)n+1,bn=
3+(-1)n-1
2
,n∈N+,且a1=2,设数列{an}的前n项和为Sn,则S63=
 
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:由已知条件推导出bn=
2,n为奇数
1,n为偶数
,an=
2,n为奇数
-
4
3
,n为偶数
,由此能求出S63
解答: 解:∵bn=
3+(-1)n-1
2

∴bn=
2,n为奇数
1,n为偶数

bn+1an+bnan+1=(-1)n+1
∴当n为奇数时,an+2an+1=0,
当n为偶数时,2an+an+1=2,
∵a1=2,
∴an=
n+1,n是奇数
-
n
2
,n是偶数

∴S63=
(2+64)×32
2
-
(1+31)×31
2
=560
故答案为:560.
点评:本题考查数列求和等基础知识,考查计算能力、推理论证能力、综合发现问题解决问题的能力以及分类讨论思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列五个命题:
①某班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽取一个容易为4的样本,已知7号,33号,46号同学在样本中,那么样本另一位同学的编号为23;
②一组数据1、2、3、4、5的平均数、众数、中位数相同;
③一组数据a、0、1、2、3,若该组数据的平均值为1,则样本标准差为2;
④根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为
?
y
=ax+b中,b=2,
.
x
=1,
.
y
=3,则a=1;
⑤如图是根据抽样检测后得出的产品样本净重(单位:克)数据绘制的频率分布直方图,已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克,并且小于104克的产品的个数是90.
其中真命题为(  )
A、①②④B、②④⑤
C、②③④D、③④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

设各项均为非负数的数列{an}的为前n项和Sn=λnan(a1≠a2,λ∈R).
(1)求实数λ的值;
(2)求数列{an}的通项公式(用n,a2表示).
(3)证明:当m+l=2p(m,l,p∈N*)时,Sm•Sl≤Sp2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的偶函数满足:f(x+4)=f(x)+f(2),且当x∈[0,2]时,y=f(x)单调递减,给出以下四个命题:
①f(2)=0;  
②x=4是函数y=f(x)图象的一条对称轴;  
③函数y=f(x)在区间[6,8]上单调递增;
④若方程f(x)=0.在区间[-2,2]上有两根为x1,x2,则x1+x2=0.
以上命题正确的是
 
.(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

下列是容量为100的样本的频率分布直方图,则样本数据落在范围〔6,10〕内的频数值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1-
x
)20
的展开式中,系数为有理数的项共有
 
项.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=log3(2cosx+1),x∈(-
3
3
)
 的值域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列命题:
①两组对应边相等的三角形是全等三角形;
②“若xy=0,则|x|+|y|=0”的逆命题;
③“若a>b,则2x•a>2x•b”的否命题;
④“矩形的对角线互相垂直”的逆否命题.
其中真命题共有(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2-mx+m2-7=0},B={x|x2-3x+2=0},C={x|x2+4x-5=0},若A∩B≠∅且A∩C=∅,求实数m的值.

查看答案和解析>>

同步练习册答案