精英家教网 > 高中数学 > 题目详情
函数y=log3(2cosx+1),x∈(-
3
3
)
 的值域是
 
考点:对数函数的值域与最值
专题:函数的性质及应用
分析:利用换元法,结合三角函数和对数函数的图象和性质,即可得到函数的值域.
解答: 解:设t=2cosx+1,
∵x∈(-
3
3
)

-
1
2
<cosx≤1

即0<t≤3,
∵y=log3t为增函数,
∴log3t≤log33=1,
即y≤1,
∴函数的值域为(-∞,1],
故答案为:(-∞,1].
点评:本题主要考查函数的值域的计算,利用换元法结合对数函数的图象和性质是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn=2n+a(a为常数,n∈N*)
(1)求a1,a2,a3
(2)若数列{an}为等比数列,求常数a的值及an
(3)对于(2)中的an,记f(n)=λ•a2n+1-4λ•an+1-3,若f(n)<0对任意的正整数n恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知下列四个命题;
①函数g(x)=1+
2
2x-1
是奇函数;
②函数f(x)=log2x满足:对于任意x1,x2∈R,且x1≠x2,都有f(
x1+x2
2
)>
1
2
[f(x1)+f(x2)]

③若函数f(x)满足f(x-1)=-f(x+1),f(1)=2,则f(7)=-2;
④设x1,x2是关于x的方程|logax|=k(a>0,a≠1,k>0)的两根,则x1x2=1;
其中正确的命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}与{bn}满足bn+1an+bnan+1=(-1)n+1,bn=
3+(-1)n-1
2
,n∈N+,且a1=2,设数列{an}的前n项和为Sn,则S63=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x丨丨x丨2-3丨x丨+2=0},B={x丨(a-2)x=2},则满足B?A的a值有
 
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中,真命题是(  )
A、?x0∈R,|x0|≤0
B、?x∈R,2x>x2
C、a-b=0的充要条件是
a
b
=1
D、若p∧q为假,则p∨q为假(p,q是两个命题)

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知
OA
=(-1,t),
OB
=(2,2),若∠ABO=90°,则t=(  )
A、2B、4C、5D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

直线y-1=k(x-3)被圆(x-2)2+(y-2)2=4所截得的最短弦长等于(  )
A、
3
B、2
3
C、2
2
D、
5

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为梯形,AB∥DC,∠ABC=90°且PA=AB=BC,DC=2AB点E是棱PB上的动点.
(Ⅰ)当PD∥平面EAC时,确定点E在棱PB上的位置;
(Ⅱ)在(Ⅰ)的条件下,求二面角E-AC-B的正切值.

查看答案和解析>>

同步练习册答案