精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,下列说法正确的是(  )
A.f(x)的图象关于直线$x=-\frac{2π}{3}$对称
B.f(x)的图象关于点$(-\frac{5π}{12},0)$对称
C.将函数$y=\sqrt{3}sin2x-cos2x$的图象向左平移$\frac{π}{2}$个单位得到函数f(x)的图象
D.若方程f(x)=m在$[-\frac{π}{2},0]$上有两个不相等的实数根,则m的取值范围是$(-2,-\sqrt{3}]$

分析 由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式,再结合正弦函数的图象和性质,得出结论.

解答 解:由函数的图象可得A=2,$\frac{1}{4}•\frac{2π}{ω}$=$\frac{π}{3}$-$\frac{π}{12}$,求得ω=2.
在根据五点法作图可得2×$\frac{π}{3}$+φ=π,求得φ=$\frac{π}{3}$,∴函数f(x)=2sin(2x+$\frac{π}{3}$).
当$x=-\frac{2π}{3}$时,f(x)=0,不是最值,故A不成立.
当x=-$\frac{5π}{12}$时,f(x)=0=-2,不等于零,故B不成立.
将函数$y=\sqrt{3}sin2x-cos2x$=2sin(2x-$\frac{π}{6}$)的图象向左平移$\frac{π}{2}$个单位得到函数y=sin[2(x+$\frac{π}{2}$)-$\frac{π}{6}$]=sin(2x+$\frac{5π}{6}$)的图象,故C不成立.
当x∈[-$\frac{π}{2}$,0]时,2x+$\frac{π}{3}$∈[-$\frac{2π}{3}$,$\frac{π}{3}$].
∵sin(-$\frac{2π}{3}$)=sin(-$\frac{π}{3}$)=-$\frac{\sqrt{3}}{2}$,sin(-$\frac{π}{2}$)=-1,
故方程f(x)=m在$[-\frac{π}{2},0]$上有两个不相等的实数根时,则m的取值范围是$(-2,-\sqrt{3}]$,故D成立;
故选:D.

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,正弦函数的图象和性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.设等差数列{an}的前n项和为Sn,已知a3=12,S12>0,S13<0.
(1)求数列{an}的公差d的取值范围;
(2)求数列{an}的前n项和为Sn取得最大值时n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知抛物线C:y2=2px(p>0)的焦点为F,准线l与x轴的交点为M,点P(m,n)(m>p)在抛物线C上,且△FOP的外接圆圆心到准线l的距离为$\frac{3}{4}$.
(1)求抛物线C的方程;
(2)若直线PF与抛物线C交于另一点A,证明:kMP+kMA为定值;
(3)过点P作圆(x-1)2+y2=1的两条切线,与y轴分别交于D、E两点,求△PDE面积取得最小值时对应的m值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知实数x,y满足$\left\{\begin{array}{l}{2x+y≥0}\\{x-y≥0}\\{0≤x≤a}\end{array}\right.$,设b=x-2y,若b的最小值为-2,则b的最大值为10.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.给出一个如图所示的流程图,若要使输入的x值与输出的y值相等,则这样的x值的集合为{0,1,3}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知矩阵A=$(\begin{array}{l}{a}&{b}\\{c}&{d}\end{array})$对应的变换把曲线y=sinx变为曲线y=sin2x
(1)求矩阵A;
(2)若矩阵B=$(\begin{array}{l}{2}&{-2}\\{1}&{1}\end{array})$,求AB的逆矩阵.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若复数z满足z(i-1)=(i+1)2(i为虚数单位),则z为(  )
A.1+iB.1-iC.-1+iD.-1-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=sin(ωx+φ)(?>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的最小正周期是π,且当x=$\frac{π}{12}$时,f(x)取得最大值,则f($\frac{π}{3}$+x)+f($\frac{π}{3}$-x)=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求函数y=$\sqrt{{x}^{2}-2x+2}+\sqrt{{x}^{2}-4x+13}$的最小值及相应的x值.

查看答案和解析>>

同步练习册答案