精英家教网 > 高中数学 > 题目详情
8.下列各组函数表示同一函数的是(  )
A.f(x)=|x|,g(x)=$\left\{\begin{array}{l}{x(x≥0)}\\{-x(x<0)}\end{array}\right.$B.f(x)=$\frac{{x}^{2}-4}{x-2}$,g(x)=x+2
C.f(x)=$\sqrt{{x}^{2}}$,g(x)=x+2D.f(x)=$\sqrt{1-{x}^{2}}$+$\sqrt{{x}^{2}-1}$,g(x)=0,x∈{-1,1}.

分析 分别判断两个函数的定义域和对应法则是否完全相同即可.

解答 解:A.因为f(x)=|x|,所以函数f(x)与g(x)的对应法则不一致,所以A不是同一函数.
B.f(x)=$\frac{{x}^{2}-4}{x-2}$=x+2,x≠2,f(x)与g(x)的定义域不一致,所以B不是同一函数.
C.(x)=$\sqrt{{x}^{2}}$=|x|,所以f(x)与g(x)的对应法则不一致,所以C不是同一函数.
D.由$\left\{\begin{array}{l}{1-{x}^{2}≥0}\\{{x}^{2}-1≥0}\end{array}\right.$,得$\left\{\begin{array}{l}{{x}^{2}≤1}\\{{x}^{2}≥1}\end{array}\right.$,则x2=1,则x=1或-1,此时f(x)=0.所以f(x)与g(x)的对应法则不一致,所以D是同一函数.
故选:D.

点评 本题主要考查判断两个函数是否为同一函数,判断的标准是函数的定义域与对应法则是否完全相同.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知2x+y=1,且x>0,y>0,则$\frac{1}{x}+\frac{1}{y}$的最小值是3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知M={x|(x-a)2<1},N={x|x2-5x-24<0},若M是N的充分条件,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知f(x)=$\left\{\begin{array}{l}{x-5\\;(x≥6)}\\{f(x+2)\\;(x<6)}\end{array}\right.$,则f(-3)为 (  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知定义在R上的函数f(x)满足f(x)=f(2-x),其图象经过点(2,0),且对任意x${\;}_{{1}_{\;}}$,x2∈(1,+∞),且x1≠x2,(x1-x2)[f(x1)-f(x2)]>0恒成立,则不等式(x-1)f(x)≥0的解集为(  )
A.(-∞,1]B.[1,+∞)C.(-∞,0]∪[1,2]D.[0,1]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知f(x)=2+$\sqrt{x}$,x∈[1,16],则y=[f(x)]2+f(x2)的值域是[12,22].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),R1,R2是它实轴的两个端点,Q是其虚轴的一个端点,已知渐近线的方向向量是(1,$\sqrt{3}$)与(1,-$\sqrt{3}$),△QR1R2的面积是$\sqrt{3}$,O是坐标原点,直线y=kx+m与双曲线C交于A,B两点,且$\overrightarrow{OA}$⊥$\overrightarrow{OB}$.
(1)求双曲线C的方程;
(2)求点P(k,m)的轨迹方程;
(3)求证:原点O到直线AB的距离是定值,并求弦|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求f(x)=sinxcosx+sinx-cosx的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设集合S={1,2,3,4,5,6,7,8,9},集合A={a1,a2,a3},A⊆S,a1,a2,a3满足a1<a2<a3且a3-a2≤6,那么满足条件的集合A的个数为83.

查看答案和解析>>

同步练习册答案