精英家教网 > 高中数学 > 题目详情
如图在直三棱柱ABC-A1B1C1中,∠ABC=90°,BC=2,CC1=4,E是BB1上的一点,且EB1=1,D、F、G分别是CC1、B1C1、A1C1的中点,EF与B1D相交于H.
(Ⅰ)求证:B1D⊥平面ABD;
(Ⅱ)求证:平面EFG∥平面ABD;
(Ⅲ)求平面EG与平面ABD的距离.
考点:平面与平面平行的判定,直线与平面垂直的判定,点、线、面间的距离计算
专题:空间位置关系与距离
分析:(Ⅰ)由已知条件得AB⊥平面BB1C1C,从而AB⊥B1D,又B1D⊥BD,由此能证明B1D⊥平面ABD.
(Ⅱ)由已知条件推导出EF∥平面ABD,GF∥平面ABD,由此能证明平面EFG∥平面ABD.
(Ⅲ)由已知条件推导出HD为平行平面EFG与ABD之间的距离,由此能求出结果.
解答: (Ⅰ)证明:由直三棱柱的性质,得平面ABC⊥平面BB1C1C,
又AB⊥BC,∴AB⊥平面BB1C1C,
又B1D?平面BB1C1C,
∴AB⊥B1D,
∵BC=CD=DC1=B1C1=2,
∴在Rt△BCD和Rt△DC1B1中,
∠BDC=∠B1DC1=45°,
∴∠BDB1=90°,即B1D⊥BD,
又AB∩BD=B,
∴B1D⊥平面ABD.
(Ⅱ)证明:由题意知EB1=B1F=1,
∴在Rt△EB1F中,∠FEB1=45°,
又∠DBB1=45°,∴EF∥BD,
∵BD?平面ABD,EF不包含于平面ABD,
∴EF∥平面ABD,
∵G、F分别为A1C1、B1C1的中点,
∴GF∥A1B1,又A1B1∥AB,
∴GF∥AB,
∵AB?平面,GF不包含平面ABD,
∴GF∥平面ABD,
∵EF?平面EFG,GF?平面EFG,EF∩GF=F,
∴平面EFG∥平面ABD.
(Ⅲ)解:∵B1D⊥平面ABD,平面EGF∥平面ABD,
∴B1D⊥平面EGF,
∴HD为平行平面EFG与ABD之间的距离,
∴HD=B1D-B1H=2
2
-
2
2
=
3
2
2
点评:本题考查直线与平面垂直的证明,考查平面与平面平行的证明,考查两平行平面间的距离的求法,解题时要注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若向量
a
b
是一组基底,向量
c
=x
a
+y
b
(x,y∈R),则称(x,y)为向量
c
在基底
a
b
下的坐标.现已知向量
t
在基底
p
=(1,2),
q
=(-1,1)下的坐标为(-1,-3),则向量
t
在另一组基底
m
=(1,-1),
n
=(0,-1)下的坐标为(  )
A、(-1,-3)
B、(2,-3)
C、(2,-5)
D、(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

某人需要补充维生素.现有甲、乙两种维生素胶囊,它们都含有维生素A、C、E和最新发现的Z.甲种每粒含有维生素A、C、E、Z分别是1mg,2mg,4mg,3mg;乙种每粒含有维生素A、C、E、Z分别是3mg,1mg,3mg,2mg.若此人每天摄入维生素A至多18mg,维生素C至多13mg,维生素E至少12mg,则他每天应服用两种胶囊和多少粒才能满足需要量,并能得到最大最的维生素Z?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,∠A,∠B,∠C的对边分别为a,b,c,若bcosC+ccosB=2acosC.
(1)求∠C;
(2)若c=4
3
,a+b=8,求S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥S-ABC中,△ABC是边长为4的正三角形,平面SAC⊥平面ABC,SA=SC=2
3
,M、N分别为AB、SB的中点.
(1)求证:AC⊥SB;
(2)求二面角N-CM-B的大小;
(3)求点B到平面CMN的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

根据要求,求x的取值范围:
(1)tan
x
2
3

(2)cot2x≤-
3

(3)|sinx|≤|cosx|;
(4)logxtanx>0;
(5)log
3
sin
x
2
-log
3
cos
x
2
>-1且-2π<x<2π.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x、y∈R,且
x
1+i
+
y
1+2i
=
5
1+3i
,求x、y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某商场预计全年分批购入每台价值2000元的电视机共3600台,每批购入的台数相同,且每批均须付运费400元,储存购入的电视机全年所付保管费与每批购入电视机的总价值(不含运费)成正比.若每批购入400台,则全年需用去运费和保管费43600元.现在全年只有24000元可用于支付运费和保管费,请问能否恰当安排每批进货的数量,使这24000元的资金够用?写出你的结论,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-4lnx-
1
2
ax2+x,其中a∈R.
(Ⅰ)若a=-
1
2
,求函数f(x)的最小值;
(Ⅱ)若存在两个整数m,n,使得函数f(x)在区间(m,n)上是增函数,且(m,n)⊆(0,a+4),求n的最大值,及n取最大值时a的取值范围.

查看答案和解析>>

同步练习册答案