精英家教网 > 高中数学 > 题目详情
18.若以双曲线$\frac{x^2}{a^2}-\frac{y^2}{4}=1({a>0})$的左、右焦点和点$({2,\sqrt{5}})$为顶点的三角形为直角三角形,则该双曲线的焦距为(  )
A.$2\sqrt{5}$B.6C.8D.10

分析 由题意可知,求得$\overrightarrow{{F}_{1}P}$=(2+c,$\sqrt{5}$),$\overrightarrow{{F}_{2}P}$=(2-c,$\sqrt{5}$),由题意可知,$\overrightarrow{{F}_{1}P}$•$\overrightarrow{{F}_{2}P}$=0,即可求得c的值,则双曲线的焦距.

解答 解:由题意可知:F1(-c,0),F2(c,0),P$({2,\sqrt{5}})$,
$\overrightarrow{{F}_{1}P}$=(2+c,$\sqrt{5}$),$\overrightarrow{{F}_{2}P}$=(2-c,$\sqrt{5}$),
则$\overrightarrow{{F}_{1}P}$•$\overrightarrow{{F}_{2}P}$=0,即(2+c,$\sqrt{5}$)(2-c,$\sqrt{5}$)=0,即4-c2+5=0,c=3,
双曲线的焦距2c=6,
故选B.

点评 本题考查双曲线的简单几何性质,向量的坐标运算,考查计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知A={x|x2-5x+6>0},B={x|log2(x+1)<2}.
(1)求A∩B;
(2)若不等式x2+ax-b<0的解集是A∩B,求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设集合A={x|y=lg(x-3)},B={y|y=2x,x∈R},则A∪B等于(  )
A.B.RC.{x|x>1}D.{x|x>0}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列命题正确的是(  )
A.四条线段顺次首尾连接,所得的图形一定是平面图形
B.一条直线和两条平行直线都相交,则三条直线共面
C.两两平行的三条直线一定确定三个平面
D.和两条异面直线都相交的直线一定是异面直线

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列各组函数中,表示同一函数的是(  )
A.f(x)=2log2x,$g(x)={log_2}{x^2}$B.f(x)=|x|,$g(x)={(\sqrt{x})^2}$
C.f(x)=x,$g(x)=lo{g_2}{2^x}$D.f(x)=x+1,$g(x)=\frac{x^2}{x}-1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=sin2x+cos2x如何平移可以得到函数y=sin2x-cos2x图象(  )
A.向左平移$\frac{π}{2}$B.向右平移$\frac{π}{2}$C.向左平移$\frac{π}{4}$D.向右平移$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在△ABC中,AB=7,BC=5,CA=6,则$\overrightarrow{AB}$•$\overrightarrow{BC}$=-19.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.△ABC中,A=45°,B=30°,a=10,则b=(  )
A.5$\sqrt{2}$B.10$\sqrt{2}$C.10$\sqrt{6}$D.5$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知θ为锐角,且cos(θ+$\frac{π}{12}$)=$\frac{\sqrt{3}}{3}$,则cos($\frac{5π}{12}$-θ)=(  )
A.$\frac{\sqrt{6}+\sqrt{2}}{4}$B.$\frac{1}{2}$C.$\frac{\sqrt{6}}{3}$D.-$\frac{\sqrt{6}}{3}$

查看答案和解析>>

同步练习册答案