精英家教网 > 高中数学 > 题目详情
已知一个几何体是由上、下两部分构成的组合体,其三视图如图,若图中圆的半径为l,等腰三角形的腰长为
5
;,则该几何体的表面积是
 
考点:由三视图求面积、体积
专题:空间位置关系与距离
分析:根据几何体的三视图知该几何体是上部为圆锥,底面为半球的组合体,求出它的表面积即可.
解答: 解:根据几何体的三视图得,
该几何体是上部为圆锥,底面为半球的组合体,
∴该几何体的表面积是
S=πrl+2πr2=π×1×
5
+2π×12=2π+
5
π.
故答案为:2π+
5
π.
点评:本题考查了空间几何体的三视图的应用问题,解题时应根据三视图得出该几何体是什么图形,从而解答问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=2x2+3在点P(1,5)的切线方程为:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=ax2+2(a-3)x+1在区间[-3,+∞)上递减,则实数a的取值范围是(  )
A、(-∞,0)
B、[-
3
2
,+∞)
C、[-
3
2
,0]
D、(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y满足约束条件
x-y-1≤0
2x-y-3≥0
,当目标函数z=ax+by(a>0,b>0)在约束条件下取到最小值2
5
时,a2+b2的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}满足条件:a1=8,a2=0,a3=-7,且数列{an+1-an}(n∈N*)是等差数列.
(Ⅰ)设cn=an+1-an,求数列{cn}的通项公式;
(Ⅱ)求Sn=|c1|+|c2|+…+|cn|

查看答案和解析>>

科目:高中数学 来源: 题型:

平面向量
AB
=(-1,1),
n
=(1,2)
,且
n
AC
=3,则
n
BC
=(  )
A、-2B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的体积为(  )
A、
32
3
B、
16
3
C、
64
3
D、
8
3

查看答案和解析>>

科目:高中数学 来源: 题型:

某种商品在近30天内每件的销售价格P(元)与时间t(天)的函数关系式近似满足P=
t+20,1≤t≤24,t∈N
-t+100,25≤t≤30,t∈N
,商品的日销售量Q(件)与时间t(天)的函数关系式近似满足Q=-t+40(1≤t≤30,t∈N).
(1)求这种商品日销售金额y与时间t的函数关系式;
(2)求y的最大值,并指出日销售金额最大的一天是30天中第几天.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x(x<4)
f(x-1)(x≥4)
,则f(8)=
 

查看答案和解析>>

同步练习册答案