精英家教网 > 高中数学 > 题目详情
19.根据所给的算式猜测1234567×9+8等于(  )
1×9+2=11;12×9+3=111;123×9+4=1 111;1234×9+5=11 111;…
A.1 111 110B.1 111 111C.11 111 110D.11 111 111

分析 分析:1×9+2=11;12×9+3=111;123×9+4=1 111;1 234×9+5=11 111;不难发现规律,故可大胆猜测(12…n)×9+(n+1)=11…1(n个)

解答 解:分析1×9+2=11;12×9+3=111;123×9+4=1 111;1 234×9+5=11 111;12 345×9+6=111 111…,
故可大胆猜测:(12…n)×9+(n+1)=11…1(n个)
∴1234567×9+8=11111111,
故选:D.

点评 归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.$|{\overrightarrow a}|=1,|{\overrightarrow b}|=2$,$\overrightarrow a•(\overrightarrow a-2\overrightarrow b)=\frac{3}{2}$,则向量$\overrightarrow a$在向量$\overrightarrow b$方向上的投影为(  )
A.$\frac{1}{8}$B.$-\frac{1}{8}$C.$±\frac{1}{8}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.对于使f(x)≤M成立的所有常数M中,我们把M的最小值叫做f(x)的上确界.若f(x)=x(1-2x)(0<x<$\frac{1}{2}$),则f(x)的上确界为(  )
A.0B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.证明当x>-1时,ex-1≥ln(x+1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=2ax-ln(2x),x∈(0,e],g(x)=$\frac{lnx}{x}$,x∈(0,e],其中e是自然对数的底数,a∈R.
(Ⅰ)当a=1时,求函数f(x)的单调区间和极值;
(Ⅱ)求证:在(Ⅰ)的条件下f(x)>g(x)+$\frac{1}{2}$;
(Ⅲ)是否存在实数a,使f(x)的最小值是3,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.过点(0,0)且倾斜角为60°的直线的方程是(  )
A.$\sqrt{3}$x+y=0B.$\sqrt{3}$x-y=0C.x+$\sqrt{3}$y=0D.x-$\sqrt{3}$y=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.一个几何体的三视图如图所示,俯视图是正方形,则这个几何体的体积是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知$\overrightarrow{a}$=(4,3),$\overrightarrow{b}$=(-1,2).
(1)求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角的余弦值;
(2)若($\overrightarrow{a}$-λ$\overrightarrow{b}$)⊥(2$\overrightarrow{a}$+$\overrightarrow{b}$),求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.将3本相同的小说,2本相同的诗集全部分给4名同学,每名同学至少1本,则不同的分法有28种.

查看答案和解析>>

同步练习册答案