分析 (1)利用$cos<\overrightarrow{a},\overrightarrow{b}>$=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}$即可得出.
(2)($\overrightarrow{a}$-λ$\overrightarrow{b}$)⊥(2$\overrightarrow{a}$+$\overrightarrow{b}$),可得($\overrightarrow{a}$-λ$\overrightarrow{b}$)•(2$\overrightarrow{a}$+$\overrightarrow{b}$)=0,解得λ.
解答 解:(1)$\overrightarrow{a}•\overrightarrow{b}$=-4+6=2,$|\overrightarrow{a}|$=$\sqrt{{4}^{2}+{3}^{2}}$=5,$|\overrightarrow{b}|$=$\sqrt{(-1)^{2}+{2}^{2}}$=$\sqrt{5}$.
∴$cos<\overrightarrow{a},\overrightarrow{b}>$=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}$=$\frac{2}{5\sqrt{5}}$=$\frac{2\sqrt{5}}{25}$.
(2)$\overrightarrow{a}$-λ$\overrightarrow{b}$=(4+λ,3-2λ),2$\overrightarrow{a}$+$\overrightarrow{b}$=(7,8),
又($\overrightarrow{a}$-λ$\overrightarrow{b}$)⊥(2$\overrightarrow{a}$+$\overrightarrow{b}$),∴($\overrightarrow{a}$-λ$\overrightarrow{b}$)•(2$\overrightarrow{a}$+$\overrightarrow{b}$)=7(4+λ)+8(3-2λ)=0,
解得λ=$\frac{52}{9}$.
点评 本题考查了向量数量积运算法则、向量夹角公式、向量垂直与数量积的关系,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 1 111 110 | B. | 1 111 111 | C. | 11 111 110 | D. | 11 111 111 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{7}$或$\frac{7}{3}$ | B. | $\frac{7}{4}$或$\frac{4}{7}$ | C. | $\frac{7}{5}$或$\frac{5}{7}$ | D. | $\frac{7}{6}$或$\frac{6}{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{7}{25}$ | B. | $\frac{18}{25}$ | C. | $\frac{1}{3}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{1}{2}$)a<($\frac{1}{2}$)b | B. | $\frac{b}{a}$<1 | C. | lg(a-b)>0 | D. | a2>b2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{2}$ | B. | $\frac{π}{4}$ | C. | $\frac{3π}{4}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com