精英家教网 > 高中数学 > 题目详情
20.若a,b是实数,且a>b,则下列结论成立的是(  )
A.($\frac{1}{2}$)a<($\frac{1}{2}$)bB.$\frac{b}{a}$<1C.lg(a-b)>0D.a2>b2

分析 利用函数的单调性、不等式的基本性质即可判断出结论.

解答 解:∵a>b,∴$(\frac{1}{2})^{a}$$<(\frac{1}{2})^{b}$,$\frac{b}{a}$与1的大小关系不确定,lg(a-b)与0的大小关系不确定,a2与b2的大小关系不确定.
因此只有A正确.
故选:A.

点评 本题考查了不等式的基本性质、函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.对于使f(x)≤M成立的所有常数M中,我们把M的最小值叫做f(x)的上确界.若f(x)=x(1-2x)(0<x<$\frac{1}{2}$),则f(x)的上确界为(  )
A.0B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.一个几何体的三视图如图所示,俯视图是正方形,则这个几何体的体积是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知$\overrightarrow{a}$=(4,3),$\overrightarrow{b}$=(-1,2).
(1)求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角的余弦值;
(2)若($\overrightarrow{a}$-λ$\overrightarrow{b}$)⊥(2$\overrightarrow{a}$+$\overrightarrow{b}$),求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设随机变量X~N(2,σ2),且P(X≤4)=0.84,则P(X<0)=0.16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.函数f(x)满足?x1,x2∈R都有f(x1+x2)=f(x1)+f(x2)-3,当x>0时,f(x)>3,且f(3)=6
(1)求f(1)的值;
(2)求证:f(x)是R上的增函数;
(3)解不等式f(a2-3a-9)<4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.不论实数m取何值,直线(m-1)x-y+2m-1=0都过定点(  )
A.(2,-1)B.(-2,1)C.(1,-2)D.(-1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.将3本相同的小说,2本相同的诗集全部分给4名同学,每名同学至少1本,则不同的分法有28种.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若二次函数g(x)满足g(1)=1,g(-1)=5,且图象过原点,则g(x)的解析式为(  )
A.g(x)=2x2-3xB.g(x)=3x2-2xC.g(x)=3x2+2xD.g(x)=-3x2-2x

查看答案和解析>>

同步练习册答案