精英家教网 > 高中数学 > 题目详情
10.对于使f(x)≤M成立的所有常数M中,我们把M的最小值叫做f(x)的上确界.若f(x)=x(1-2x)(0<x<$\frac{1}{2}$),则f(x)的上确界为(  )
A.0B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{1}{8}$

分析 将f(x)配方,求得对称轴,与所给区间比较,即可得到f(x)的最大值,可得f(x)的上确界.

解答 解:f(x)=x(1-2x)
=-2x2+x=-2(x-$\frac{1}{4}$)2+$\frac{1}{8}$,
可得对称轴x=$\frac{1}{4}$∈(0,$\frac{1}{2}$),
即有x=$\frac{1}{4}$时,f(x)取得最大值$\frac{1}{8}$,
则f(x)的上确界为$\frac{1}{8}$.
故选:D.

点评 本题考查新定义的理解和运用,考查二次函数的最值求法,注意运用配方法和比较对称轴和区间的关系,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.某几何体的三视图如图所示,设正方形的边长为a,则该三棱锥的表面积为(  )
A.a2B.$\sqrt{3}{a^2}$C.$\frac{{\sqrt{3}}}{6}{a^2}$D.$2\sqrt{3}{a^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知z∈C,且|z|=1,则|z-2i|(i为虚数单位)的最小值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知x>0,则函数f(x)=7-x-$\frac{9}{x}$的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.${∫}_{-1}^{1}$(x2+x+$\sqrt{4-{x}^{2}}$)dx=$\frac{2}{3}$+$\frac{2π}{3}$+$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求函数f(x)=x3-3x2-9x-2,x∈[-1,5]的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.复数m(3+i)-(2+i)在复平面内对应的点在第四象限,则m的取值范围是(  )
A..$[{\frac{2}{3},1})$B..$({\frac{2}{3},1})$C..$({\frac{2}{3},1}]$D.$[{\frac{2}{3},1}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.根据所给的算式猜测1234567×9+8等于(  )
1×9+2=11;12×9+3=111;123×9+4=1 111;1234×9+5=11 111;…
A.1 111 110B.1 111 111C.11 111 110D.11 111 111

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若a,b是实数,且a>b,则下列结论成立的是(  )
A.($\frac{1}{2}$)a<($\frac{1}{2}$)bB.$\frac{b}{a}$<1C.lg(a-b)>0D.a2>b2

查看答案和解析>>

同步练习册答案