精英家教网 > 高中数学 > 题目详情
14.椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的两焦点F1,F2,若M是椭圆上一点,且满足∠F1MF2=60°,则离心率的范围是(  )
A.$[{\frac{1}{2},1})$B.$[{\frac{{\sqrt{3}}}{2},1})$C.$({0,\frac{1}{2}}]$D.$({0,\frac{{\sqrt{3}}}{2}}]$

分析 利用椭圆的定义,以及余弦定理,结合基本不等式求解离心率的范围即可.

解答 解:设MF1=m,MF2=n,
$|{F}_{1}{F}_{2}{|}^{2}={m}^{2}+{n}^{2}-2mncos60°$.
即4c2=m2+n2-mn=(m+n)2-3mn,
∴$mn=\frac{4}{3}({a^2}-{c^2})$,
∵$m•n≤{(\frac{m+n}{2})^2}$,即$\frac{4}{3}({a^2}-{c^2})≤{a^2}$,
∴${e^2}≥\frac{1}{4}∴e∈[{\frac{1}{2},1})$
故选:A.

点评 本题考查双曲线的简单性质的应用,余弦定理的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如果在10000张奖券中有5个一等奖,20个二等奖,50个三等奖,100个鼓励奖,试问买一张奖券中奖的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知曲线C的方程为2x2-3y-8=0,则正确的是(  )
A.点(3,0)在曲线C上B.点(0,-$\frac{2}{3}$)在曲线C上
C.点($\frac{3}{2}$,1)在曲线C上D.点(0,-$\frac{8}{3}$)在曲线C上

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{2}$=1的焦点为F1,F2,点P在椭圆上,若|PF1|=2,则∠F1PF2的正弦值$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下面的程序段结果是(  )
A.-3B.-10C.0D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=ex-alnx.
(1)当a=4时,求证:f(x)在区间[2,+∞)上不存在零点;
(2)若两个函数在公共定义域内具有相同的单调性,则称这两个函数为“共性函数”.已知函数h(x)=-$\frac{1}{x+1}$,且函数f(x)-e-x与h(x)的共性函数,求实数a的取值范围.
(3)若对任意x1∈[2,+∞),存在x2∈[0,+∞),使${e}^{{x}_{1}}{e}^{{x}_{2}}$-4${e}^{{x}_{2}}$lnx1≥x2${e}^{2{x}_{2}}$+x2+b${e}^{{x}_{2}}$,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=lnx-$\frac{1}{2}$ax2-2x,其中a≤0.
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线方程为y=2x+b,求a-2b的值;
(Ⅱ)讨论函数f(x)的单调性;
(Ⅲ)设函数g(x)=x2-3x+3,如果对于任意的x,t∈(0,1],都有f(x)≤g(t)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{lnx}{x}$.
(1)求函数f(x)的单调区间和最大值;
(2)若两不等正数m,n满足mn=nm,函数f(x)的导函数为f′(x),求证:f′($\frac{m+n}{2}$)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x2-lnx.
(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)设g(x)=x2-x+t,若函数h(x)=f(x)-g(x)在$[\frac{1}{e},e]$上(这里e≈2.718)恰有两个不同的零点,求实数t的取值范围.

查看答案和解析>>

同步练习册答案