精英家教网 > 高中数学 > 题目详情
2.椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{2}$=1的焦点为F1,F2,点P在椭圆上,若|PF1|=2,则∠F1PF2的正弦值$\frac{\sqrt{3}}{2}$.

分析 用定义法,由|PF1|+|PF2|=6,且|PF1|=2,易得|PF2|,再用余弦定理求解,即可求出∠F1PF2的正弦值.

解答 解:∵|PF1|+|PF2|=2a=6,
∴|PF2|=6-|PF1|=4.
在△F1PF2中,cos∠F1PF2=$\frac{4+16-4×7}{2×2×4}$=-$\frac{1}{2}$
∴∠F1PF2=120°,
∴sin∠F1PF2=$\frac{\sqrt{3}}{2}$.
故答案为:$\frac{\sqrt{3}}{2}$.

点评 本题主要考查椭圆定义的应用及焦点三角形问题,这类题是常考类型,难度不大,考查灵活,特别是椭圆的定义和性质考查的很到位.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知数列{an}中,a1=2,an>0,且满足2a2n+1-an2-1=0(n∈N),求an,用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在正方体ABCD-A′B′C′D′中,E,F,E′,F′分别是AB,BC,A′B′,B′C′的中点,求证:EE′∥FF′.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知直线OA、OB、OC两两垂直,那么平面AOB、平面AOC、平面BOC中互相垂直的有(  )
A.0对B.1对C.2对D.3对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知M?{a,b,c},则符合条件的M的个数是(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知F是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点,A为右顶点,P是椭圆上一点,PF⊥x轴.若|PF|=$\frac{1}{4}$|AF|,则该椭圆的离心率是$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的两焦点F1,F2,若M是椭圆上一点,且满足∠F1MF2=60°,则离心率的范围是(  )
A.$[{\frac{1}{2},1})$B.$[{\frac{{\sqrt{3}}}{2},1})$C.$({0,\frac{1}{2}}]$D.$({0,\frac{{\sqrt{3}}}{2}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线方程为y=2x,双曲线的左右焦点分别为F1,F2,点P为双曲线的右支上的一点,且满足∠F1PF2=60°,S${\;}_{△{F}_{1}P{F}_{2}}$=$\sqrt{3}$,则双曲线的方程为(  )
A.4x2-y2=1B.2x2-$\frac{{y}^{2}}{2}$=1C.3x2-$\frac{3{y}^{2}}{4}$=1D.5x2-$\frac{5{y}^{2}}{4}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=x3-4x2+5x-4.求曲线f(x)在点(2,f(2))处的切线方程x-y-4=0.

查看答案和解析>>

同步练习册答案