精英家教网 > 高中数学 > 题目详情
17.如图,在正方体ABCD-A′B′C′D′中,E,F,E′,F′分别是AB,BC,A′B′,B′C′的中点,求证:EE′∥FF′.

分析 由正方形的结构特征可知EE′∥BB′,FF′∥BB′,故而结论成立.

解答 证明:∵E,E′分别是AB,A′B′的中点,AB=A′B′,AB∥A′B′,
∴BE∥B′E′,BE=B′E′,
∴四边形BEE′B′是平行四边形,
∴EE′∥BB′,
同理可证:FF′∥BB′,
∴EE′∥FF′.

点评 本题考查了平行线的判定,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.sin75°的值等于(  )
A.$\frac{{\sqrt{6}+\sqrt{2}}}{4}$B.$\frac{{\sqrt{6}-\sqrt{2}}}{4}$C.$\frac{{\sqrt{3}+\sqrt{2}}}{4}$D.$\frac{{\sqrt{3}-\sqrt{2}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如果在10000张奖券中有5个一等奖,20个二等奖,50个三等奖,100个鼓励奖,试问买一张奖券中奖的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,已知:C满足cos(π-C)=$\frac{1}{7}$,a,b两边的长恰是方程3${\;}^{{x}^{2}-4x}$=36x-21的两个根,且a>b,求角A的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.若x=2+$\sqrt{3}$,y=2-$\sqrt{3}$,求x2y+xy2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某个电脑用户计划使用不超过1000元的资金购买单价分别为80元、90元的单片软件和盒装磁盘.根据需要,软件至少买3片,磁盘至少买4盒,写出满足上述所有不等关系的不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知曲线C的方程为2x2-3y-8=0,则正确的是(  )
A.点(3,0)在曲线C上B.点(0,-$\frac{2}{3}$)在曲线C上
C.点($\frac{3}{2}$,1)在曲线C上D.点(0,-$\frac{8}{3}$)在曲线C上

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{2}$=1的焦点为F1,F2,点P在椭圆上,若|PF1|=2,则∠F1PF2的正弦值$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{lnx}{x}$.
(1)求函数f(x)的单调区间和最大值;
(2)若两不等正数m,n满足mn=nm,函数f(x)的导函数为f′(x),求证:f′($\frac{m+n}{2}$)<0.

查看答案和解析>>

同步练习册答案