精英家教网 > 高中数学 > 题目详情
19.命题p:?x0>1,lgx0>1,则¬p为(  )
A.?x0>1,lgx0≤1B.?x0>1,lgx0<1C.?x>1,lgx≤1D.?x>1,lgx<1

分析 根据特称命题的否定是全称命题进行判断即可.

解答 解:命题是特称命题,则命题的否定是全称命题,即?x>1,lgx≤1,
故选:C

点评 本题主要考查含有量词的命题的否定,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.在△ABC中,∠CAB=∠CBA=30°,AC,BC边上的高分别为BD,AE,则以A,B为焦点,且过D,E两点的椭圆离心率为(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{2}}{2}$C.$\sqrt{3}$-1D.$\sqrt{2}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点为F1,右焦点为F2,离心率e=$\frac{1}{2}$.过F1的直线交椭圆于A,B两点,且△ABF2的周长为8.
(1)求椭圆E的方程.
(2)在椭圆E上,是否存在点M(m,n)使得直线l:mx+ny=1与圆O:x2+y2=1相交于不同的两点P,Q,且△POQ的面积最大?若存在,求出点M的坐标及相对应的△POQ的面积;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知Sn=1×2+2×3+3×4+…+n(n+1),计算S1,S2,S3,并归纳前n项和Sn的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与双曲线$\frac{{x}^{2}}{{m}^{2}}$-$\frac{{y}^{2}}{{n}^{2}}$=1(m>0,n>0)有相同的焦点(-c,0)和(c,0),若c是a,m的等比中项,n2是2m2与c2的等差中项,则椭圆的离心率是(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知复数Z满足Z•(1+i)=2i,则Z是(  )
A.1+iB.1-iC.$\frac{1}{2}+\frac{1}{2}i$D.$\frac{1}{2}-\frac{1}{2}i$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知实数m>0,p:x2-4x-12≤0,q:2-m≤x≤2+m.
(Ⅰ)若m=3,判断p是q的什么条件(请用简要过程说明“充分不必要条件”、“必要不充分条件”、“充要条件”和“既不充分也不必要条件”中的哪一个);
(Ⅱ)若p是q的充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若对一切正实数x,t,不等式$\frac{t}{4}$-cos2x≥asinx-$\frac{9}{t}$都成立,则实数a的取值范围是[-3,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合,M={y|y=cosx,x∈R},$N=\left\{{x∈{Z}\left|{\frac{2-x}{1+x}≥0}\right.}\right\}$,则M∩N为(  )
A.B.{0,1}C.{-1,1}D.(-1,1]

查看答案和解析>>

同步练习册答案