精英家教网 > 高中数学 > 题目详情
14.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与双曲线$\frac{{x}^{2}}{{m}^{2}}$-$\frac{{y}^{2}}{{n}^{2}}$=1(m>0,n>0)有相同的焦点(-c,0)和(c,0),若c是a,m的等比中项,n2是2m2与c2的等差中项,则椭圆的离心率是(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{2}}{2}$

分析 根据是a、m的等比中项可得c2=am,根据椭圆与双曲线有相同的焦点可得a2-b2=m2+n2=c2,根据n2是2m2与c2的等差中项可得2n2=2m2+c2,联立方程即可求得a和c的关系,进而求得离心率e.

解答 解:由椭圆和双曲线有相同的焦点,
可得a2-b2=m2+n2=c2
由c是a,m的等比中项,可得c2=am;
由n2是2m2与c2的等差中项,可得2n2=2m2+c2
(即有n2=m2+$\frac{1}{2}$c2.解得m=$\frac{1}{2}$c,
代入c2=am,即为a=2c,e=$\frac{c}{a}$=$\frac{1}{2}$)
可得m=$\frac{{c}^{2}}{a}$,n2=$\frac{{c}^{4}}{{a}^{2}}$+$\frac{1}{2}$c2
即有$\frac{2{c}^{4}}{{a}^{2}}$+$\frac{1}{2}$c2=c2
化简可得,a2=4c2
即有e=$\frac{c}{a}$=$\frac{1}{2}$.
故选:B.

点评 本题考查椭圆的离心率的求法,注意运用椭圆的性质,同时考查等差数列和等比数列的中项的性质,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知实数x,y满足$\frac{{x}^{2}}{4}$+y2=1,则x+2y的最大值为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设p:函数f(x)=lg(x2-4x+a2)的定义域为R;q:a2-5a-6≥0.如果“p∨q”为真,且“p∧q”为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数y=tanωx(ω>0)与直线y=a相交于A、B两点,且|AB|最小值为π,则函数f(x)=3sin(ωx-$\frac{π}{6}$)的单调增区间是(  )
A.[k$π-\frac{π}{6}$,k$π+\frac{π}{3}$](k∈Z)B.[2kπ-$\frac{π}{3}$,2k$π+\frac{2π}{3}$](k∈Z)
C.[kπ+$\frac{π}{3}$,k$π+\frac{5π}{6}$](k∈Z)D.[2k$π+\frac{2π}{3}$,2k$π+\frac{5π}{3}$](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个顶点与抛物线C2:x2=4y的焦点重合,F1、F2分别是椭圆C1的左、右焦点,C1的离心率e=$\frac{\sqrt{2}}{2}$,过F2的直线l与椭圆C1交于M,N两点,与抛物线C2交于P,Q两点.
(1)求椭圆C1的方程;
(2)当直线l的斜率k=-1时,求△PQF1的面积;
(3)在x轴上是否存在点A,$\overrightarrow{AM}$•$\overrightarrow{AN}$为常数?若存在,求出点A的坐标和这个常数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.命题p:?x0>1,lgx0>1,则¬p为(  )
A.?x0>1,lgx0≤1B.?x0>1,lgx0<1C.?x>1,lgx≤1D.?x>1,lgx<1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知直线l1:2x-my=1,l2:(m-1)x-y=1,若l1∥l2,则实数m的值为2或-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设集合A是实数集R的子集,如果x0∈R满足:对任意a>0,都存在x∈A,使得0<|x-x0|<a,则称x0为集合A的聚点,给出下列集合(其中e为自然对数的底):①{1+$\frac{1}{x}$|x>0};②{2x|x∈N};③{x2+x+2|x∈R};④{lnx|x>0且x≠e},其中,以1为聚点的集合有(  )
A.①②B.②③C.③④D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知定点F1(-$\sqrt{3}$,0),F2($\sqrt{3}$,0)曲线C是使得|RF1|+|RF2|为定值(大于|F1F2|)的点R的轨迹,且曲线C过点T(0,1).
(1)求曲线C的方程;
(2)若直线l过点F2,且与曲线C交于P,Q两点,当△F1PQ的面积取得最大值时,求直线l的方程.

查看答案和解析>>

同步练习册答案