精英家教网 > 高中数学 > 题目详情
4.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列四个结论:①b<0;  ②b2-4ac>0;③4a-2b+c>0;   ④a-b+c<0
其中正确结论有(  )个.
A.1B.2C.3D.4

分析 根据抛物线开口方向,判断a的正负;根据对称轴方程是x=-$\frac{b}{2a}$<0,可判断b的符号,判断①的正确性;
根据图象与x轴交点的个数判断②是否正确;
利用f(-2)>0判断③是否正确;
利用f(-1)>0判断④是否正确.

解答 解:根据图象开口向下,∴a<0;
∵-$\frac{b}{2a}$<0⇒b<0,①正确;
∵图象与 x轴有两个交点,∴△>0,②正确;
∵f(-2)=4a-2b+c>0,∴③正确;
∵a-b+c=f(-1)>0,∴④不正确.
故选C.

点评 本题考查一元二次函数的图象特征与系数的关系,考查数形结合的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.设x,y∈R,a>1,b>1,若ax=by=3,a+b=6,则$\frac{1}{x}$+$\frac{1}{y}$的最大值为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,椭圆x2+$\frac{y^2}{4}$=1的左、右顶点分别为A、B,双曲线Γ以A、B为顶点,焦距
为2$\sqrt{5}$,点P是Γ上在第一象限内的动点,直线AP与椭圆相交于另一点Q,线段AQ的中点为M,记直线AP的斜率为k,O为坐标原点.
(1)求双曲线Γ的方程;
(2)求点M的纵坐标yM的取值范围;
(3)是否存在定直线l,使得直线BP与直线OM关于直线l对称?若存在,求直线l方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数$f(x)=\frac{{{{(x+3)}^0}}}{{\sqrt{|x|-x}}}$的定义域是(-∞,-3)∪(-3,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=3x-1,x∈{x∈N|1≤x≤4},则函数f(x)的值域为{2,5,8,11}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知双曲线经过点M($\sqrt{6},\sqrt{6}$).
(1)如果此双曲线的渐近线为$y=±\sqrt{2}x$,求双曲线的标准方程;
(2)如果此双曲线的离心率e=2,求双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知点A(1,0),B(4,0),圆C:(x-a)2+(y-a)2=1,若圆C上存在点M,使|MB|=2|MA|,则实数a的取值范围为-$\frac{\sqrt{6}}{2}$≤a≤-$\frac{\sqrt{2}}{2}$或$\frac{\sqrt{2}}{2}$≤a≤$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)是定义在R上的偶函数,且在(0,+∞)是单调函数,则满足f(x)=f(${\frac{x+1}{x+2}}$)的所有x值的和为-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.甲、乙两位学生参加数学竞赛培训,在培训期间,他们参加的5次预赛成绩记录如下:
甲:82  82  79  95  87           乙:95  75  80  90  85
(1)用茎叶图表示这两组数据
(2)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选哪位学生参加更合适?说明理由
(3)从甲、乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率.

查看答案和解析>>

同步练习册答案