如图所示,抛物线关于x轴对称,它的顶点在坐标原点,点P(1,2),A(x1,y1),B(x2,y2)均在抛物线上.
![]()
(1)写出该抛物线的方程及其准线方程;
(2)当PA与PB的斜率存在且倾斜角互补时,求y1+y2的值及直线AB的斜率.
[分析] (1)设出抛物线方程,利用待定系数法求解.
(2)可考虑“点差法”表示直线AB的斜率.
[解析] (1)由已知条件,可设抛物线的方程为y2=2px(p>0).
∵点P(1,2)在抛物线上,
∴22=2p×1,解得p=2.
故所求抛物线的方程是y2=4x,
准线方程是x=-1.
(2)设直线PA的斜率为kPA,直线PB的斜率为kPB,
则
,
∵PA与PB的斜率存在且倾斜角互补,
∴kPA=-kPB.
由A(x1,y1),B(x2,y2)均在抛物线上,得
y
=4x1①
y
=4x2②
∴
,
∴y1+2=-(y2+2).
∴y1+y2=-4.
由①-②得直线AB的斜率
kAB=
=-1(x1≠x2).
[点评] (1)求抛物线的标准方程常采用待定系数法.利用题中已知条件确定抛物线的焦点到准线的距离p的值.
(2)对于和抛物线有两个交点的直线问题,“点差法”是常用方法.如若A(x1,y1),B(x2,y2)是抛物线y2=2px上两点,则直线AB的斜率kAB与y1+y2可得如下等式:
由y
=2px1①
y
=2px2②
②-①得y
-y
=2p(x2-x1),
.
科目:高中数学 来源: 题型:
已知圆的半径为2,圆心在x轴的正半轴上,且与直线3x+4y+4=0相切,则圆的方程是( )
A.x2+y2-4x=0 B.x2+y2+4x=0
C.x2+y2-2x-3=0 D.x2+y2+2x-3=0
查看答案和解析>>
科目:高中数学 来源: 题型:
已知矩形ABCD,P为平面ABCD外一点,且PA⊥平面ABCD,M、N分别为PC、PD上的点,且PMMC=21,N为PD的中点.若
,则x=________,y=________,z=________.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
已知抛物线y2=2px(p>0)的焦点为F,F关于原点的对称点为P,过F作x轴的垂线交抛物线于M、N两点,有下列四个命题:
①△PMN必为直角三角形;②△PMN不一定为直角三角形;③直线PM必与抛物线相切;④直线PM不一定与抛物线相切.其中正确的命题是( )
A.①③ B.①④
C.②③ D.②④
查看答案和解析>>
科目:高中数学 来源: 题型:
一工厂生产了某种产品24000件,它们来自甲、乙、丙3条生产线,现采用分层抽样的方法对这批产品进行抽样检查.已知从甲、乙、丙3条生产线依次抽取的个体数恰好组成一个等差数列,则这批产品中乙生产线生产的产品数量是( )
A.12000 B.6000
C.4000 D.8000
查看答案和解析>>
科目:高中数学 来源: 题型:
为了了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如下图.由于不慎将部分数据丢失,但知道后5组频数和为62,设视力在4.6到4.8之间的学生数为a,最大频率为0.32,则a的值为( )
![]()
A.64 B.54
C.48 D.27
查看答案和解析>>
科目:高中数学 来源: 题型:
某雷达测速区规定:凡车速大于或等于80km/h的汽车视为“超速”,并将受到处罚.如图是某路段的一个检测点对200辆汽车的车速进行检测所得结果的频率分布直方图,则从图中可以看出被处罚的汽车大约有( )
![]()
A.20辆 B.40辆
C.60辆 D.80辆
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com