精英家教网 > 高中数学 > 题目详情
已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<
π
2
)的周期为π,且图象上一个最低点为M(
3
,-2).
(1)求f(x)的解析式;
 (2)当x∈[0,
π
12
]时,求函数f(x)的最大值和最小值.
分析:(1)结合周期公式T=
ω
=π,可求得ω,由fmin(x)=-2可得A,由f(x)的最低点为M(
3
,-2),代入函数解析式,结合0<φ<
π
2
可求φ
(2)由(1)可得f(x)=2sin(2x+
π
6
),由0≤x≤
π
12
 可求2x+
π
6
的范围,结合正弦函数的性质可求函数的最值
解答:解:(1)由T=
ω
=π,可得ω=2
又由fmin(x)=-2可得A=2
∵f(x)的最低点为M(
3
,-2)
∴sin(
3
+φ)=-1
∵0<φ<
π
2

3
3
+φ<
2

3
+φ=
2

∴φ=
π
6

∴f(x)=2sin(2x+
π
6

(2)∵0≤x≤
π
12
π
6
≤2x+
π
6
π
3

∴当2x+
π
6
=
π
6
,即x=0时,fmin(x)=2sin
π
6
=1
当2x+
π
6
=
π
3
,即x=
π
12
时,fmax(x)=2sin
π
3
=
3
点评:本题主要考查了由函数y=Asin(ωx+φ)的部分图象求解函数的解析式,其一般步骤:由函数的周期求解ω,由函数的最值点求解A,最后由函数的图象上的一点(一般用最值点)求φ,从而求出函数的解析式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案