·ÖÎö £¨¢ñ£©Èôf£¨x£©£¾1£¬Ôò$lo{g}_{\frac{1}{2}}£¨2x-1£©£¾lo{g}_{\frac{1}{2}}\frac{1}{2}¼´\left\{\begin{array}{l}2x-1£¼\frac{1}{2}\\ 2x-1£¾0\end{array}\right.$£¬½âµÃ´ð°¸£»
£¨¢ò£©·ÖÀàÌÖÂÛʹf£¨x£©ÔÚÇø¼ä[$\frac{1}{2}$£¬3]ÉÏÊÇÔöº¯ÊýµÄaÖµ£¬×ÛºÏÌÖÂÛ½á¹û¿ÉµÃ´ð°¸£»
£¨¢ó£©¸ù¾Ýº¯Êýf£¨x£©=${log_{\sqrt{66}}}£¨4{x^2}-x£©$Ϊ[$\frac{1}{2}$£¬3]ÉϵÄÓнç±ä²îº¯Êý£¬½áºÏ£¨¢ò£©ÖнáÂÛ£¬¿ÉµÃ´ð°¸£®
½â´ð ½â£º£¨¢ñ£©$f£¨x£©={log_{\frac{1}{2}}}£¨2x-1£©£¾1?{log_{\frac{1}{2}}}£¨2x-1£©£¾{log_{\frac{1}{2}}}\frac{1}{2}?\left\{\begin{array}{l}2x-1£¼\frac{1}{2}\\ 2x-1£¾0\end{array}\right.$¡£¨3·Ö£©
½âµÃ$\frac{1}{2}£¼x£¼\frac{3}{4}$¡£¨4·Ö£©
£¨¢ò£©µ±a£¾1ʱ£¬$\left\{\begin{array}{l}\frac{1}{2a}¡Ü\frac{1}{2}\\ g£¨\frac{1}{2}£©=\frac{1}{4}a-\frac{1}{2}£¾0\end{array}\right.⇒a£¾2$¡£¨6·Ö£©
µ±0£¼a£¼1ʱ£¬$\left\{\begin{array}{l}\frac{1}{2a}¡Ý3\\ g£¨3£©=9a-3£¾0\end{array}\right.⇒\left\{\begin{array}{l}a¡Ü\frac{1}{6}\\ a£¾\frac{1}{3}\end{array}\right.$£¬Î޽⡣¨7·Ö£©
×ÛÉÏËùÊöa£¾2¡£¨8·Ö£©
£¨¢ó£©º¯Êýf£¨x£©=${log_{\sqrt{66}}}£¨4{x^2}-x£©$Ϊ[$\frac{1}{2}$£¬3]ÉϵÄÓнç±ä²îº¯Êý£®¡£¨9·Ö£©
ÓÉ£¨2£©Öªµ±$a=\sqrt{66}$ʱ£¬º¯Êýf£¨x£©Îª[$\frac{1}{2}$£¬3]Éϵĵ¥µ÷µÝÔöº¯Êý£¬
ÇÒ¶ÔÈÎÒâ»®·ÖT£º$\frac{1}{2}={x_0}£¼{x_1}£¼¡£¼{x_{i-1}}£¼{x_i}£¼¡£¼{x_n}=3$£¬
ÓÐ$f£¨\frac{1}{2}£©=f£¨{x_0}£©£¼f£¨{x_1}£©£¼¡£¼f£¨{x_{n-1}}£©£¼f£¨{x_n}£©=f£¨3£©$£¬
ËùÒÔf£¨x1£©-f£¨x0£©+f£¨x2£©-f£¨x1£©+¡+f£¨xn£©-f£¨xn-1£©=$f£¨{x_n}£©-f£¨{x_0}£©=f£¨3£©-f£¨\frac{1}{2}£©={log_{\sqrt{66}}}33-{log_{\sqrt{66}}}\frac{1}{2}=2$£¬¡£¨11·Ö£©
ËùÒÔ´æÔÚ³£ÊýM¡Ý2£¬Ê¹µÃ$\sum_{i=1}^n{|{f£¨{x_i}£©-f£¨{x_{i-1}}£©}|}¡ÜM$ºã³ÉÁ¢£¬
ËùÒÔMµÄ×îСֵΪ2£®¡£¨12·Ö£©
µãÆÀ ±¾Ì⿼²éµÄ֪ʶµãÊǶÔÊýº¯ÊýµÄͼÏóºÍÐÔÖÊ£¬ÊìÁ·ÕÆÎÕ¶ÔÊýº¯ÊýµÄͼÏóºÍÐÔÖÊ£¬Êǽâ´ðµÄ¹Ø¼ü£®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | -6 | B£® | $\frac{3}{2}$ | C£® | 6 | D£® | $\frac{13}{2}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | {1} | B£® | {2} | C£® | {0£¬1} | D£® | {1£¬2} |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{1}{4}$ | B£® | $\frac{1}{3}$ | C£® | $\frac{1}{2}$ | D£® | $\frac{3}{4}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨-¡Þ£¬0] | B£® | [0£¬+¡Þ£© | C£® | £¨0£¬+¡Þ£© | D£® | £¨-¡Þ£¬+¡Þ£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 120ÖÖ | B£® | 48ÖÖ | C£® | 36ÖÖ | D£® | 18ÖÖ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{1}{2}$ | B£® | $\frac{{\sqrt{6}}}{3}$ | C£® | $\frac{{\sqrt{5}}}{3}$ | D£® | $\frac{2}{3}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\sqrt{3}$ | B£® | $\sqrt{7}$ | C£® | $\frac{{\sqrt{21}}}{7}$ | D£® | $\frac{{\sqrt{21}}}{3}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\sqrt{2}sin£¨x+\frac{¦Ð}{4}£©$ | B£® | $-\sqrt{2}sin£¨x+\frac{¦Ð}{4}£©$ | C£® | $\sqrt{2}sin£¨x-\frac{¦Ð}{4}£©$ | D£® | $-\sqrt{2}sin£¨x-\frac{¦Ð}{4}£©$ |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com