16£®Éèf£¨x£©=logag£¨x£©£¨a£¾0ÇÒa¡Ù1£©
£¨¢ñ£©Èô$f£¨x£©={log_{\frac{1}{2}}}£¨2x-1£©$£¬ÇÒÂú×ãf£¨x£©£¾1£¬ÇóxµÄȡֵ·¶Î§£»
£¨¢ò£©Èôg£¨x£©=ax2-x£¬ÊÇ·ñ´æÔÚaʹµÃf£¨x£©ÔÚÇø¼ä[$\frac{1}{2}$£¬3]ÉÏÊÇÔöº¯Êý£¿Èç¹û´æÔÚ£¬ËµÃ÷a¿ÉÒÔÈ¡ÄÄЩֵ£»Èç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨¢ó£©¶¨ÒåÔÚ[p£¬q]ÉϵÄÒ»¸öº¯Êým£¨x£©£¬Ó÷ַ¨T£º
p=x0£¼x1£¼¡­£¼xi-1£¼xi£¼¡­£¼xn=q
½«Çø¼ä[p£¬q]ÈÎÒâ»®·Ö³Én¸öÐ¡Çø¼ä£¬Èç¹û´æÔÚÒ»¸ö³£ÊýM£¾0£¬Ê¹µÃ²»µÈʽ|m£¨x1£©-m£¨x0£©|+|m£¨x2£©-m£¨x1£©|+¡­+|m£¨xi£©-m£¨xi-1£©|+¡­+|m£¨xn£©-m£¨xn-1£©|¡ÜMºã³ÉÁ¢£¬Ôò³Æº¯Êým£¨x£©ÎªÔÚ[p£¬q]ÉϵÄÓнç±ä²îº¯Êý£®ÊÔÅжϺ¯Êýf£¨x£©=${log_{\sqrt{66}}}£¨4{x^2}-x£©$ÊÇ·ñΪÔÚ[$\frac{1}{2}$£¬3]ÉϵÄÓнç±ä²îº¯Êý£¿ÈôÊÇ£¬ÇóMµÄ×îСֵ£»Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£©Èôf£¨x£©£¾1£¬Ôò$lo{g}_{\frac{1}{2}}£¨2x-1£©£¾lo{g}_{\frac{1}{2}}\frac{1}{2}¼´\left\{\begin{array}{l}2x-1£¼\frac{1}{2}\\ 2x-1£¾0\end{array}\right.$£¬½âµÃ´ð°¸£»
£¨¢ò£©·ÖÀàÌÖÂÛʹf£¨x£©ÔÚÇø¼ä[$\frac{1}{2}$£¬3]ÉÏÊÇÔöº¯ÊýµÄaÖµ£¬×ÛºÏÌÖÂÛ½á¹û¿ÉµÃ´ð°¸£»
£¨¢ó£©¸ù¾Ýº¯Êýf£¨x£©=${log_{\sqrt{66}}}£¨4{x^2}-x£©$Ϊ[$\frac{1}{2}$£¬3]ÉϵÄÓнç±ä²îº¯Êý£¬½áºÏ£¨¢ò£©ÖнáÂÛ£¬¿ÉµÃ´ð°¸£®

½â´ð ½â£º£¨¢ñ£©$f£¨x£©={log_{\frac{1}{2}}}£¨2x-1£©£¾1?{log_{\frac{1}{2}}}£¨2x-1£©£¾{log_{\frac{1}{2}}}\frac{1}{2}?\left\{\begin{array}{l}2x-1£¼\frac{1}{2}\\ 2x-1£¾0\end{array}\right.$¡­£¨3·Ö£©
½âµÃ$\frac{1}{2}£¼x£¼\frac{3}{4}$¡­£¨4·Ö£©
£¨¢ò£©µ±a£¾1ʱ£¬$\left\{\begin{array}{l}\frac{1}{2a}¡Ü\frac{1}{2}\\ g£¨\frac{1}{2}£©=\frac{1}{4}a-\frac{1}{2}£¾0\end{array}\right.⇒a£¾2$¡­£¨6·Ö£©
µ±0£¼a£¼1ʱ£¬$\left\{\begin{array}{l}\frac{1}{2a}¡Ý3\\ g£¨3£©=9a-3£¾0\end{array}\right.⇒\left\{\begin{array}{l}a¡Ü\frac{1}{6}\\ a£¾\frac{1}{3}\end{array}\right.$£¬Î޽⡭£¨7·Ö£©
×ÛÉÏËùÊöa£¾2¡­£¨8·Ö£©
£¨¢ó£©º¯Êýf£¨x£©=${log_{\sqrt{66}}}£¨4{x^2}-x£©$Ϊ[$\frac{1}{2}$£¬3]ÉϵÄÓнç±ä²îº¯Êý£®¡­£¨9·Ö£©
ÓÉ£¨2£©Öªµ±$a=\sqrt{66}$ʱ£¬º¯Êýf£¨x£©Îª[$\frac{1}{2}$£¬3]Éϵĵ¥µ÷µÝÔöº¯Êý£¬
ÇÒ¶ÔÈÎÒâ»®·ÖT£º$\frac{1}{2}={x_0}£¼{x_1}£¼¡­£¼{x_{i-1}}£¼{x_i}£¼¡­£¼{x_n}=3$£¬
ÓÐ$f£¨\frac{1}{2}£©=f£¨{x_0}£©£¼f£¨{x_1}£©£¼¡­£¼f£¨{x_{n-1}}£©£¼f£¨{x_n}£©=f£¨3£©$£¬
ËùÒÔf£¨x1£©-f£¨x0£©+f£¨x2£©-f£¨x1£©+¡­+f£¨xn£©-f£¨xn-1£©=$f£¨{x_n}£©-f£¨{x_0}£©=f£¨3£©-f£¨\frac{1}{2}£©={log_{\sqrt{66}}}33-{log_{\sqrt{66}}}\frac{1}{2}=2$£¬¡­£¨11·Ö£©
ËùÒÔ´æÔÚ³£ÊýM¡Ý2£¬Ê¹µÃ$\sum_{i=1}^n{|{f£¨{x_i}£©-f£¨{x_{i-1}}£©}|}¡ÜM$ºã³ÉÁ¢£¬
ËùÒÔMµÄ×îСֵΪ2£®¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éµÄ֪ʶµãÊǶÔÊýº¯ÊýµÄͼÏóºÍÐÔÖÊ£¬ÊìÁ·ÕÆÎÕ¶ÔÊýº¯ÊýµÄͼÏóºÍÐÔÖÊ£¬Êǽâ´ðµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$=£¨1£¬-2£©£¬$\overrightarrow{b}$=£¨3£¬m£©£¬Èô$\overrightarrow{a}$¡Î£¨2$\overrightarrow{a}$+$\overrightarrow{b}$£©£¬ÔòʵÊýmµÄֵΪ£¨¡¡¡¡£©
A£®-6B£®$\frac{3}{2}$C£®6D£®$\frac{13}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®É輯ºÏM={0£¬1£¬2}£¬N={x¡ÊN|x-1¡Ý0}£¬ÔòM¡ÉN=£¨¡¡¡¡£©
A£®{1}B£®{2}C£®{0£¬1}D£®{1£¬2}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÈôÇø¼ä£¨0£¬1£©ÉÏÈÎȡһʵÊýb£¬Ôò·½³Ìx2+x+b=0ÓÐʵ¸ùµÄ¸ÅÂÊΪ£¨¡¡¡¡£©
A£®$\frac{1}{4}$B£®$\frac{1}{3}$C£®$\frac{1}{2}$D£®$\frac{3}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®º¯Êýy=-x2+1µÄµ¥µ÷µÝÔöÇø¼äΪ£¨¡¡¡¡£©
A£®£¨-¡Þ£¬0]B£®[0£¬+¡Þ£©C£®£¨0£¬+¡Þ£©D£®£¨-¡Þ£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÖÐÑëµçÊǪ́1Ì×Á¬Ðø²¥·Å5¸ö¹ã¸æ£¬ÆäÖÐ3¸ö²»Í¬µÄÉÌÒµ¹ã¸æºÍ2¸ö²»Í¬µÄ¹«ÒæÐû´«¹ã¸æ£¬ÒªÇó×îºó²¥·ÅµÄ±ØÐëÊǹ«ÒæÐû´«¹ã¸æ£¬ÇÒ2¸ö¹«ÒæÐû´«¹ã¸æ²»ÄÜÁ¬Ðø²¥·Å£¬Ôò²»Í¬µÄ²¥·Å·½Ê½ÓУ¨¡¡¡¡£©
A£®120ÖÖB£®48ÖÖC£®36ÖÖD£®18ÖÖ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÖÐÐÄÔÚÔ­µã£¬Ò»½¹µãΪF1£¨0£¬c£©µÄÍÖÔ²±»Ö±Ïßy=3x-2½ØµÃµÄÏÒµÄÖеãºá×ø±êÊÇ$\frac{1}{2}$£¬Ôò´ËÍÖÔ²µÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®$\frac{{\sqrt{6}}}{3}$C£®$\frac{{\sqrt{5}}}{3}$D£®$\frac{2}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®°ÑÒ»¸±Èý½Ç°åABCÓëABD°Ú³ÉÈçͼËùʾµÄÖ±¶þÃæ½ÇD-AB-C£¬£¨ÆäÖÐBD=2AD£¬BC=AC£©ÔòÒìÃæÖ±ÏßDC£¬ABËù³É½ÇµÄÕýÇÐֵΪ£¨¡¡¡¡£©
A£®$\sqrt{3}$B£®$\sqrt{7}$C£®$\frac{{\sqrt{21}}}{7}$D£®$\frac{{\sqrt{21}}}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®Èçͼ³ÌÐò¿òͼÖУ¬µ±n¡ÊN*£¨n£¾1£©Ê±£¬º¯Êýfn£¨x£©±íʾº¯Êýfn-1£¨x£©µÄµ¼º¯Êý£¬¼´fn£¨x£©=f¡än-1£¨x£©£®ÈôÊäÈ뺯Êýf1£¨x£©=sinx+cosx£¬ÔòÊä³öµÄº¯Êýfn£¨x£©Îª£¨¡¡¡¡£©
A£®$\sqrt{2}sin£¨x+\frac{¦Ð}{4}£©$B£®$-\sqrt{2}sin£¨x+\frac{¦Ð}{4}£©$C£®$\sqrt{2}sin£¨x-\frac{¦Ð}{4}£©$D£®$-\sqrt{2}sin£¨x-\frac{¦Ð}{4}£©$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸