精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax3+bx+2013,若f(2014)=4025,则f(-2014)的值为(  )
A、1B、-4025
C、-2013D、2014
考点:函数奇偶性的性质
专题:函数的性质及应用
分析:首先,构造函数g(x)=f(x)-2013=ax3+bx,然后,判断该函数为奇函数,然后利用奇函数的性质进行求值即可.
解答: 解:∵函数f(x)=ax3+bx+2013,
∴f(x)-2013=ax3+bx,
设g(x)=f(x)-2013=ax3+bx,
∴g(x)=ax3+bx,
∵g(-x)=-ax3-bx=-(ax3+bx)=-g(x),
∴g(x)为奇函数,
∴g(-2014)=-g(2014),
∵g(2014)=f(2014)-2013=4025-2013=2012,
∴g(-2014)=f(-2014)-2013=-2012
∴f(-2014)=1,
故选:A.
点评:本题综合考查了奇函数的性质、构造法在计算问题中的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a∈N,关于x的不等式|x-2|<a的解集为A,且
3
2
∈A,
1
2
∉A.则函数f(x)=|x+a|-|x-2|的值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

以下命题中,真命题有(  )
①已知平面α、β和直线m,若m∥α且α⊥β,则m⊥β.
②“若x2<1,则-1<x<1”的逆否命题是“若x<-1或x>1,则x2>1”.
③已知△ABC,D为AB边上一点,若
AD
=2
DB
CD
=
1
3
CA
CB
,则λ=
2
3

④极坐标系下,直线ρcos(θ-
π
4
)=
2
与圆ρ=
2
有且只有1个公共点.
A、0个B、1个C、2个D、3个

查看答案和解析>>

科目:高中数学 来源: 题型:

在复平面内,复数
2+i
2
对应的点位于(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}中,已知a1+a3=6,a5+a7=14,则a20+a22=(  )
A、44B、56C、42D、40

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线f(x)=x3+x-2在点P处的切线与直线x+4y+1=0垂直,则点P的坐标(  )
A、(1,0)
B、(1,0)或(-1,-4)
C、(2,8)
D、(2,8)或(-1,-4)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax+
x-2
x+1
(a>1),则f(x)=0的根有(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

在区间[-1,4]内任取一个数x,则2x-x2
1
4
的概率是(  )
A、
1
2
B、
1
3
C、
2
5
D、
3
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个内角A、B、C成等差数列,a、b、c分别为△ABC所对的边.求证:
1
a+b
+
1
b+c
=
3
a+b+c
(注:可以用分析法证明)

查看答案和解析>>

同步练习册答案