【题目】给出定义:若 (其中m为整数),则m叫做离实数x最近的整数,记作{x},即{x}=m在此基础上给出下列关于函数f(x)=|x﹣{x}|的四个命题: ① ;②f(3.4)=﹣0.4;
③ ;④y=f(x)的定义域为R,值域是 ;
则其中真命题的序号是( )
A.①②
B.①③
C.②④
D.③④
【答案】B
【解析】解:①∵﹣1﹣ <﹣ ≤﹣1+ ∴{﹣ }=﹣1∴f(﹣ )=|﹣ ﹣{﹣ }|=|﹣ +1|= ∴①正确;②∵3﹣ <3.4≤3+ ∴{3.4}=3∴f(3.4)=|3.4﹣{3.4}|=|3.4﹣3|=0.4∴②错误;③∵0﹣ <﹣ ≤0+ ∴{﹣ }=0∴f(﹣ )=|﹣ ﹣0|= ,∵0﹣ < ≤0+ ∴{ }=0∴f( )=| ﹣0|= , ∴f(﹣ )=f( )∴③正确;④y=f(x)的定义域为R,值域是[0, ]∴④错误.故选:B.
【考点精析】通过灵活运用函数的定义域及其求法和函数的值域,掌握求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零;求函数值域的方法和求函数最值的常用方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的即可以解答此题.
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线l的参数方程为 (t为参数),在极坐标系(与直角坐标系xoy取相同的单位长度,且以原点为极点,x轴的正半轴为极轴)中,圆C的极坐标方程为ρ=4cosθ.
(1)若直l线与圆C相切,求实数a的值;
(2)若点M的直角坐标为(1,1),求过点M且与直线l垂直的直线m的极坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】微信是腾讯公司推出的一种手机通讯软件,它支持发送语音短信、视频、图片和文字,一经推出便风靡全国,甚至涌现出一批在微信的朋友圈内销售商品的人(被称为微商).为了调查每天微信用户使用微信的时间,某经销化妆品的微商在一广场随机采访男性、女性用户各50 名,其中每天玩微信超过6 小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如下:
微信控 | 非微信控 | 合计 | |
男性 | 26 | 24 | 50 |
女性 | 30 | 20 | 50 |
合计 | 56 | 44 | 100 |
(1)根据以上数据,能否有60%的把握认为“微信控”与”性别“有关?
(2)现从调查的女性用户中按分层抽样的方法选出5 人并从选出的5 人中再随机抽取3 人赠送200 元的护肤品套装,记这3 人中“微信控”的人数为X,试求X 的分布列与数学期望. 参考公式: ,其中n=a+b+c+d.
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.05 | 0.025 | 0.010 |
k0 | 0.455 | 0.708 | 1.323 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术均输》中有如下问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5 钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列,问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,乙所得为( )
A. 钱
B. 钱
C. 钱
D. 钱
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= (a,b∈R)在点 (2,f(2)) 处切线的斜率为﹣ ﹣ln 2,且函数过点(4, ). (Ⅰ)求a、b 的值及函数 f (x)的单调区间;
(Ⅱ)若g(x)= (k∈N*),对任意的实数x0>1,都存在实数x1 , x2满足0<x1<x2<x0 , 使得f(x0)=f(x1)=f(x2),求k 的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: + =1(a>b>0),离心率为 ,焦点F1(0,﹣c),F2(0,c)过F1的直线交椭圆于M,N两点,且△F2MN的周长为4. (I) 求椭圆方程;
(II) 与y轴不重合的直线l与y轴交于点P(0,m)(m≠0),与椭圆C交于相异两点A,B且 =λ .若 +λ =4 ,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数f(x)=x2+ex﹣ (x<0)与g(x)=x2+ln(x+a)图象上存在关于y轴对称的点,则a的取值范围是( )
A.(﹣ )
B.( )
C.( )
D.( )
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com