分析 (1)根据已知的递推关系,可以构造出我们熟悉的等差数列.再用等差数列的性质进行求解.
(2)利用数学归纳法的证明步骤,证明即可.
解答 解:(1)根据a1=1,an+1=$\frac{2{a}_{n}}{2+{a}_{n}}$,a1=1,a2=$\frac{2}{3}$,
a3=$\frac{1}{2}$;
a4=$\frac{2}{5}$;
an+1=$\frac{2{a}_{n}}{2+{a}_{n}}$,得2an+1+an+1an=2an,
两边同时除以an+1an,得到$\frac{2}{{a}_{n+1}}$-$\frac{2}{{a}_{n}}$=1,
所以数{$\frac{2}{{a}_{n}}$}是公差为1的等差数列,且$\frac{2}{{a}_{1}}$=2,
所以$\frac{2}{{a}_{n}}$=n+1,所以an=$\frac{2}{n+1}$.
(2)①由(1)已得当n=1时,命题成立;
②假设n=k时,命题成立,即ak=$\frac{2}{k+1}$,
当n=k+1时,$\frac{2}{{a}_{k+1}}-\frac{2}{{a}_{k}}=1$,∴$\frac{2}{{a}_{n+1}}$=1+$\frac{2}{\frac{2}{k+1}}$=k+2,∴ak+1=$\frac{2}{k+2}$,
即当n=k+1时,命题成立.
根据①②得n∈N+,an=$\frac{2}{n+1}$都成立.
这个数列的通项公式an=$\frac{2}{n+1}$.
点评 构造数列是对已知数列的递推关系式变形后发现规律,创造一个等差或等比数列,借此求原数列的通项公式,是考查的重要内容.同时考查数学归纳法的应用,考查逻辑推理能力.
科目:高中数学 来源: 题型:选择题
| A. | $\widehat{y}$=x+3 | B. | $\widehat{y}$=-x+3 | C. | $\widehat{y}$=-x-3 | D. | $\widehat{y}$=-2x+4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ${(x-2)^2}+{(y+\frac{3}{2})^2}=\frac{25}{4}$ | B. | ${(x-2)^2}+{(y-\frac{3}{2})^2}=\frac{25}{4}$ | ||
| C. | ${(x+2)^2}+{(y-\frac{3}{2})^2}=\frac{25}{4}$ | D. | ${(x+2)^2}+{(y+\frac{3}{2})^2}=\frac{25}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 商店名称 | A | B | C | D | E |
| 销售额x(千万元) | 3 | 5 | 6 | 7 | 9 |
| 利润额y(百万元) | 2 | 3 | 3 | 4 | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com