精英家教网 > 高中数学 > 题目详情
已知点M(a,b)(a>0,b>0)是圆C:x2+y2=1内任意一点,点P(x,y)是圆上任意一点,则实数ax+by-1为(  )
A、一定是负数B、一定等于0
C、一定是正数D、不确定
考点:直线与圆相交的性质
专题:直线与圆
分析:由条件可得a2+b2<1,x2+y2=1,可得 x2+y2 +a2+b2<2,再利用基本不等式求得ax+by<1,从而得到结论.
解答: 解:由已知点M(a,b)(a>0,b>0)是圆C:x2+y2=1内任意一点,可得a2+b2<1,
再由点P(x,y)是圆上任意一点,可得x2+y2=1,∴x2+y2 +a2+b2<2.
又∵x2+a2≥2ax,y2+b2≥2yb,
∴x2+y2 +a2+b2≥2ax+2by,当且仅当a=x、b=y时取等号,
∴2ax+2by<2,∴ax+by<1,∴ax+by-1<0,
故选:A.
点评:本题主要考查点和圆的位置关系、基本不等式的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

△ABC中,内角A、B.C所对边分别为a、b、c,己知A=
π
6
c=
3
,b=1.
(1)求a的长及B的大小;
(2)若0<x<B,求函数f(x)=2sinxcosx+2
3
cos2x-
3
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,AB为⊙O的直径,C为⊙O上一点,PA⊥平面ABC,AE⊥PB,垂足为E,AF⊥Pc,垂足为F,求证:PB⊥平面AEF.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方形 ABCD 和正方形 CDEF所在平面互相垂直,M为FC的中点.
(1)求证:AF∥平面MBD;
(2)求异面直线AF与BM所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式组
x+y≤4
x-y≤2
y≤lnx
,则目标函数z=2x-y的最小值是(  )
A、8B、5C、4D、1+ln2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆:
x2
2
+y2=1,椭圆上有P,Q,O为原点,直线OP,OQ斜率满足kOP•kOQ=-
1
2
,求PQ中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l过圆x2+(y-3)2=4的圆心,且与直线x+y+1=0垂直,则l的方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设各项均不为零的数列{an}的前n项和为Sn,且2Sn=an•an+1(n∈N*
(1)求证:数列a2,a4,a6,…,a2n,…是等差数列,并写出a2n关于n的表达式;
(2)确定a1的值,使数列{an}为等差数列;
(3)在(2)的条件下,求数列|ansin(anπ-
π
2
)|的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

判断命题“已知a,x为实数,若关于x的不等式x2+(2a+1)x+a2+2≤0的解集非空,则a≥1”的逆否命题的真假,并证明.

查看答案和解析>>

同步练习册答案