8£®¶¨Ò壺Èç¹ûÒ»¸öÁâÐεÄËĸö¶¥µã¾ùÔÚÒ»¸öÍÖÔ²ÉÏ£¬ÄÇô¸ÃÁâÐνÐ×öÕâ¸öÍÖÔ²µÄÄÚ½ÓÁâÐΣ¬ÇÒ¸ÃÁâÐεĶԽÇÏߵĽ»µãΪÕâ¸öÍÖÔ²µÄÖÐÐÄ£®
Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÉèÍÖÔ²$\frac{x^2}{4}$+y2=1µÄËùÓÐÄÚ½ÓÁâÐι¹³ÉµÄ¼¯ºÏΪF£®
£¨1£©ÇóFÖÐÁâÐεÄ×îСµÄÃæ»ý£»
£¨2£©ÊÇ·ñ´æÔÚ¶¨Ô²ÓëFÖеÄÁâÐζ¼ÏàÇУ¿Èô´æÔÚ£¬Çó³ö¶¨Ô²µÄ·½³Ì£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£»
£¨3£©µ±ÁâÐεÄÒ»±ß¾­¹ýÍÖÔ²µÄÓÒ½¹µãʱ£¬ÇóÕâÌõ±ßËùÔÚµÄÖ±Ïߵķ½³Ì£®

·ÖÎö £¨1£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Çó³öµ±ÁâÐÎABCDµÄ¶Ô½ÇÏßÔÚ×ø±êÖáÉÏʱµÄÃæ»ý£»µ±ÁâÐÎABCDµÄ¶Ô½ÇÏß²»ÔÚ×ø±êÖáÉÏʱ£¬ÉèÖ±ÏßACµÄ·½³ÌΪ£ºy=kx£¬ÔòÖ±ÏßBDµÄ·½³ÌΪ£º$y=-\frac{1}{k}x$£¬ÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬ÇóµÃOA¡¢OB£¬´úÈëÁâÐÎÃæ»ý¹«Ê½£¬×ª»¯Îª¹ØÓÚkµÄº¯Êý£¬ÔÙÓÉ»ù±¾²»µÈʽÇó×îÖµ£»
£¨2£©ÉèÔ­µãµ½ÁâÐÎÈÎÒ»±ßµÄ¾àÀëΪd£¬½áºÏ£¨1£©ÀûÓõȻý·¨ÇóµÃdΪ¶¨Öµ£¬ËµÃ÷´æÔÚ¶¨Ô²ÓëFÖеÄÁâÐζ¼ÏàÇУ¬²¢ÇóµÃÔ²µÄ·½³Ì£»
£¨3£©ÉèÁâÐεÄÒ»±ßADµÄ·½³ÌΪ$y=t£¨{x-\sqrt{3}}£©$£¬»¯ÎªÒ»°ãʽ£¬ÓÉ£¨2£©½áºÏµãµ½Ö±ÏߵľàÀ빫ʽÇóµÃtµÃ´ð°¸£®

½â´ð ½â£º£¨1£©Èçͼ£¬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
¢Ùµ±ÁâÐÎABCDµÄ¶Ô½ÇÏßÔÚ×ø±êÖáÉÏʱ£¬ÆäÃæ»ýΪ$4¡Á\frac{1}{2}¡Á2¡Á1=4$£»
¢Úµ±ÁâÐÎABCDµÄ¶Ô½ÇÏß²»ÔÚ×ø±êÖáÉÏʱ£¬ÉèÖ±ÏßACµÄ·½³ÌΪ£ºy=kx£¬
ÔòÖ±ÏßBDµÄ·½³ÌΪ£º$y=-\frac{1}{k}x$£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=kx}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$£¬µÃ${x_1}^2=\frac{4}{{4{k^2}+1}}$£¬${y_1}^2=\frac{{4{k^2}}}{{4{k^2}+1}}$£¬
´Ó¶ø$O{A^2}={x_1}^2+{y_1}^2=\frac{{4£¨{k^2}+1£©}}{{4{k^2}+1}}$£¬
ͬÀí¿ÉµÃ£¬$O{B^2}={x_2}^2+{y_2}^2=\frac{{4[{{{£¨{-\frac{1}{k}}£©}^2}+1}]}}{{4{{£¨{-\frac{1}{k}}£©}^2}+1}}=\frac{{4£¨{k^2}+1£©}}{{{k^2}+4}}$£¬
¡àÁâÐÎABCDµÄÃæ»ýΪ2¡ÁOA¡ÁOB=$8\sqrt{\frac{{{k^4}+2{k^2}+1}}{{4{k^4}+17{k^2}+4}}}$=$4\sqrt{\frac{{{k^4}+2{k^2}+1}}{{{k^4}+\frac{17}{4}{k^2}+1}}}$
=$4\sqrt{1-\frac{{\frac{9}{4}{k^2}}}{{{k^4}+\frac{17}{4}{k^2}+1}}}$=$4\sqrt{1-\frac{9}{{4£¨{{k^2}+\frac{1}{k^2}}£©+17}}}$$¡Ý4\sqrt{1-\frac{9}{{4¡Á2\sqrt{{k^2}¡Á\frac{1}{k^2}}+17}}}$=$\frac{16}{5}$£®
£¨µ±ÇÒ½öµ±k=¡À1ʱµÈºÅ³ÉÁ¢£©£¬
×ÛÉϵã¬ÁâÐÎABCDµÄ×îÐ¡Ãæ»ýΪ$\frac{16}{5}$£»
£¨2£©´æÔÚ¶¨Ô²${x^2}+{y^2}=\frac{4}{5}$ÓëFÖÐÁâÐεͼÏàÇУ®
ÉèÔ­µãµ½ÁâÐÎÈÎÒ»±ßµÄ¾àÀëΪd£¬ÏÂÃæÖ¤Ã÷£º$d=\frac{2}{{\sqrt{5}}}$£®
Ö¤Ã÷£ºÓÉ£¨1£©Öª£¬µ±ÁâÐÎABCDµÄ¶Ô½ÇÏßÔÚ×ø±êÖáÉÏʱ£¬$d=\frac{2}{{\sqrt{5}}}$£¬
µ±ÁâÐÎABCDµÄ¶Ô½ÇÏß²»ÔÚ×ø±êÖáÉÏʱ£¬
${d^2}=\frac{{O{A^2}¡ÁO{B^2}}}{{O{A^2}+O{B^2}}}$=$\frac{{\frac{{4£¨{k^2}+1£©}}{{4{k^2}+1}}¡Á\frac{{4£¨{k^2}+1£©}}{{{k^2}+4}}}}{{\frac{{4£¨{k^2}+1£©}}{{4{k^2}+1}}+\frac{{4£¨{k^2}+1£©}}{{{k^2}+4}}}}$=$\frac{{4{{£¨{k^2}+1£©}^2}}}{{£¨{k^2}+1£©£¨{k^2}+4£©+£¨{k^2}+1£©£¨4{k^2}+1£©}}$
=$\frac{{4{{£¨{k^2}+1£©}^2}}}{{£¨{k^2}+1£©£¨5{k^2}+5£©}}=\frac{4}{5}$£¬¼´µÃ$d=\frac{2}{{\sqrt{5}}}$£®
×ÛÉÏ£¬´æÔÚ¶¨Ô²${x^2}+{y^2}=\frac{4}{5}$ÓëFÖеÄÁâÐζ¼ÏàÇУ»
£¨3£©ÉèÖ±ÏßADµÄ·½³ÌΪ$y=t£¨{x-\sqrt{3}}£©$£¬¼´$tx-y-\sqrt{3}t=0$£¬
ÔòµãO£¨0£¬0£©µ½Ö±ÏßADµÄ¾àÀëΪ$\frac{{|{\sqrt{3}t}|}}{{\sqrt{{t^2}+1}}}=\frac{2}{{\sqrt{5}}}$£¬
½âµÃ$t=¡À\frac{{2\sqrt{11}}}{11}$£¬
Ö±ÏßADµÄ·½³ÌΪ$y=¡À\frac{{2\sqrt{11}}}{11}£¨{x-\sqrt{3}}£©$£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÎÊÌâ¡¢»ù±¾²»µÈʽµÄÐÔÖÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÑµÁ·ÁË´æÔÚÏëÎÊÌâµÄÇó½â·½·¨£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÒÑÖª¸´ÊýzÂú×㣨1+i£©z=1£¨ÎªÐéÊýµ¥Î»£©£¬ÔòzµÄģΪ$\frac{\sqrt{2}}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®º¯Êýf£¨x£©=2cos£¨2x+¦È£©sin¦È-sin2£¨x+¦È£©£¨¦ÈΪ³£Êý£©Í¼ÏóµÄÒ»¸ö¶Ô³ÆÖÐÐĵÄ×ø±êΪ£¨¡¡¡¡£©
A£®£¨-$\frac{¦Ð}{4}$£¬0£©B£®£¨0£¬0£©C£®£¨$\frac{¦Ð}{4}$£¬0£©D£®£¨$\frac{¦Ð}{6}$£¬0£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®Éèx1¡¢x2·Ö±ðÊǹØÓÚxµÄ·½³Ìx2+mx+m2-m=0µÄÁ½¸ö²»ÏàµÈµÄʵÊý¸ù£¬ÄÇô¹ýÁ½µãA£¨x1£¬x12£©£¬B£¨x2£¬x22£©µÄÖ±ÏßÓëÔ²£¨x-1£©2+£¨y+1£©2=1µÄλÖùØÏµÊÇ£¨¡¡¡¡£©
A£®ÏàÀëB£®ÏàÇÐC£®ÏཻD£®ËæmµÄ±ä»¯¶ø±ä»¯

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÔÚ¡÷ABCÖУ¬a£¬b£¬c·Ö±ðΪ½ÇA£¬B£¬CËù¶ÔµÄ±ß£®Èôb=2acosC£¬Ôò¡÷ABCµÄÐÎ×´Ò»¶¨ÊÇ£¨¡¡¡¡£©
A£®µÈÑüÖ±½ÇÈý½ÇÐÎB£®Ö±½ÇÈý½ÇÐÎ
C£®µÈÑüÈý½ÇÐÎD£®µÈÑü»òÖ±½ÇÈý½ÇÐÎ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{4}$+y2=1£¬µãM£¨x0£¬y0£©ÊÇÍÖÔ²CÉϵÄÒ»µã£¬Ô²M£¨x-x0£©2+£¨y-y0£©2=r2£®
£¨1£©ÈôÔ²MÓëxÖáÏàÇÐÓÚÍÖÔ²CµÄÓÒ½¹µã£¬ÇóÔ²MµÄ·½³Ì£»
£¨2£©´ÓÔ­µãOÏòÔ²M£º£¨x-x0£©2+£¨y-y0£©2=$\frac{4}{5}$×÷Á½ÌõÇÐÏßÓëÍÖÔ²C½»ÓÚP£¬QÁ½µã£¨P£¬Q²»ÔÚ×ø±êÖáÉÏ£©£¬ÉèOP£¬OQµÄбÂÊ·Ö±ðΪk1£¬k2£®
¢ÙÊÔÎÊk1£¬k2ÊÇ·ñΪ¶¨Öµ£¿ÈôÊÇ£¬Çó³öÕâ¸ö¶¨Öµ£»Èô²»ÊÇ˵Ã÷ÀíÓÉ£»
¢ÚÇó|OP|•|OQ|µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªÍÖÔ²M£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ½¹¾àΪ2£¬µãD£¨0£¬$\sqrt{3}$£©ÔÚÍÖÔ²MÉÏ£¬¹ýÔ­µãO×÷Ö±Ïß½»ÍÖÔ²MÓÚA¡¢BÁ½µã£¬ÇÒµãA²»ÊÇÍÖÔ²MµÄ¶¥µã£¬¹ýµãA×÷xÖáµÄ´¹Ïߣ¬´¹×ãΪH£¬µãCÊÇÏß¶ÎAHµÄÖе㣬ֱÏßBC½»ÍÖÔ²MÓÚµãP£¬Á¬½ÓAP£®
£¨¢ñ£©ÇóÍÖÔ²MµÄ·½³Ì¼°ÀëÐÄÂÊ£»
£¨¢ò£©ÇóÖ¤£ºAB¡ÍAP£»
£¨¢ó£©Éè¡÷ABCµÄÃæ»ýÓë¡÷APCµÄÃæ»ýÖ®±ÈΪq£¬ÇóqµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÑÖªÅ×ÎïÏßy2=4xµÄ½¹µãΪF£¬µãMΪֱÏßx=-2ÉϵÄÒ»¶¯µã£¬¹ýµãMÏòÅ×ÎïÏßy2=4xµÄ×÷ÇÐÏߣ¬ÇеãΪB£¬C£¬ÒÔµãFΪԲÐĵÄÔ²ÓëÖ±ÏßBCÏàÇУ¬Ôò¸ÃÔ²Ãæ»ýµÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
A£®£¨0£¬¦Ð£©B£®£¨0£¬¦Ð]C£®£¨0£¬4¦Ð£©D£®£¨0£¬4¦Ð]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÒÑÖªÅ×ÎïÏߵķ½³ÌΪ2y=x2£¬Ôò¸ÃÅ×ÎïÏßµÄ×¼Ïß·½³ÌΪ$y=-\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸