精英家教网 > 高中数学 > 题目详情
19.函数f(x)=2cos(2x+θ)sinθ-sin2(x+θ)(θ为常数)图象的一个对称中心的坐标为(  )
A.(-$\frac{π}{4}$,0)B.(0,0)C.($\frac{π}{4}$,0)D.($\frac{π}{6}$,0)

分析 由sin2(x+θ)=sin[(2x+θ)+θ],展开两角和的正弦,进一步利用两角差的正弦化简得f(x)=-sin2x,由2x=kπ求得x的值得答案.

解答 解:f(x)=2cos(2x+θ)sinθ-sin2(x+θ)
=2cos(2x+θ)sinθ-sin[(2x+θ)+θ]
=2cos(2x+θ)sinθ-sin(2x+θ)cosθ-cos(2x+θ)sinθ
=cos(2x+θ)sinθ-sin(2x+θ)cosθ=-sin2x.
由2x=kπ,得x=$\frac{kπ}{2}$,k∈Z.
∴f(x)图象的一个对称中心的坐标为(0,0).
故选:B.

点评 本题考查三角函数值的恒等变换应用,考查了正弦型函数的图象和性质,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.设复数z满足z=$\frac{2}{i-1}$,则z=(  )
A.-1-iB.-1+iC.1-iD.1+i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.甲、乙、丙三人一起玩“黑白配”游戏:甲、乙、丙三人每次都随机出“手心(白)”、“手背(黑)”中的某一个手势,当其中一个人出示的手势与另外两人都不一样时,这个人胜出;其他情况,不分胜负.则一次游戏中甲胜出的概率是$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=axex,曲线y=f(x)在点(0,f(0))处的切线方程为y=2x+b.
(1)求实数a,b的值;
(2)设函数g(x)=f(x)-x2-2x,求函数g(x)的单调区间;
(3)在(2)的条件下,是否存在实数k,使得对于任意的x∈(-∞,0),都有g(x)≤kx恒成立?若存在,求出实数k的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,直四棱柱ABCD-A1B1C1D1的棱长均为2,∠BAD=60°,M为BB1的中点,Ol为上底面对角线的交点.
(Ⅰ)求证:O1M⊥平面ACM;
(Ⅱ)求AD1与平面ADM所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C的中心在原点,一个焦点为F(0,$\sqrt{3}$),且椭圆C经过点P($\frac{1}{2}$,$\sqrt{3}$).
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点M(0,1)的斜率不为0的直线与椭圆交于A、B两点,A关于y轴的对称点为A′,求证:A′B恒过y轴上的一个定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆T:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个顶点A(0,1),离心率e=$\frac{\sqrt{6}}{3}$,圆C:x2+y2=4,从圆C上任意一点P向椭圆T引两条切线PM、PM.
(1)求椭圆T的方程;
(2)求证:PM⊥PN.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.定义:如果一个菱形的四个顶点均在一个椭圆上,那么该菱形叫做这个椭圆的内接菱形,且该菱形的对角线的交点为这个椭圆的中心.
如图,在平面直角坐标系xOy中,设椭圆$\frac{x^2}{4}$+y2=1的所有内接菱形构成的集合为F.
(1)求F中菱形的最小的面积;
(2)是否存在定圆与F中的菱形都相切?若存在,求出定圆的方程;若不存在,说明理由;
(3)当菱形的一边经过椭圆的右焦点时,求这条边所在的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=2cos(${\frac{π}{3}$x+φ)图象的一个对称中心为(2,0),且|φ|<$\frac{π}{2}$.要得到函数f(x)的图象,可将函数y=2cos$\frac{π}{3}$x的图象(  )
A.向左平移$\frac{1}{2}$个单位长度B.向右平移$\frac{1}{2}$个单位长度
C.向左平移$\frac{π}{6}$个单位长度D.向右平移$\frac{π}{6}$个单位长度

查看答案和解析>>

同步练习册答案