精英家教网 > 高中数学 > 题目详情
13.正弦函数是奇函数,因为f(x)=sin(x+1)是正弦函数,所以f(x)=sin(x+1)是奇函数.以上推理(  )
A.结论正确B.大前提错误C.小前提错误D.以上都不对

分析 根据题意,分析所给推理的三段论,找出大前提,小前提,结论,再判断正误即可得答案.

解答 解:根据题意,该推理的大前提:正弦函数是奇函数,正确;
小前提:f(x)=sin(x+1)是正弦函数,因为该函数f(x)=sin(x+1)不是正弦函数,故错误;
结论:f(x)=sin(x+1)是奇函数,故错误.
故选:C.

点评 本题考查演绎推理的基本方法,关键是理解演绎推理的定义以及三段论的形式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.函数$y=sin(2x-\frac{π}{3})$的图象经过下列平移,所得图象对应的函数为偶函数的是(  )
A.向左平移$\frac{π}{6}$个单位B.向右平移$\frac{π}{6}$个单位
C.向左平移$\frac{5π}{12}$个单位D.向右平移$\frac{5π}{12}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知△ABC是等腰直角三角形,点E,F是斜边AC的三等分点,则tan∠EBF=(  )
A.$\frac{16}{27}$B.$\frac{2}{3}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,已知向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$,那么下列结论正确的是(  )
A.$\overrightarrow a+\overrightarrow b=\overrightarrow c$B.$\overrightarrow a+\overrightarrow b=-\overrightarrow c$C.$\overrightarrow a-\overrightarrow b=-\overrightarrow c$D.$\overrightarrow b+\overrightarrow c=\overrightarrow a$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在△ABC中,内角A,B,C所对的边分别是a,b,c,若$tanA=\frac{1}{2}$,$tanB=\frac{1}{3}$,b=2,则tanC=-1,c=$2\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知直线l:y=x+m与函数f(x)=ln(x+2)的图象相切于点P.
(1)求实数m的值;
(2)证明除切点P外,直线l总在函数f(x)的图象的上方;
(3)设a,b,c是两两不相等的正实数,且a,b,c成等比数列,试判断f(a)+f(c)与2f(b)的大小关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设x∈R,则“|x-1|<1”是“x2-x-2<0”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某舞步每一节共九步,且每一步各不相同,其中动作A三步,动作B三步,动作C三步,同一种动作相邻,则这种舞步一节中共有多少种不同的变化(  )
A.1296种B.216种C.864种D.1080种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在同一平面直角坐标系中,经过伸缩变换$\left\{\begin{array}{l}x′=5x\\ y′=3y\end{array}$后,曲线C变为曲线x′2+y′2=0,则曲线C的方程为(  )
A.25x2+9y2=0B.25x2+9y2=1C.9x2+25y2=0D.9x2+25y2=1

查看答案和解析>>

同步练习册答案