精英家教网 > 高中数学 > 题目详情
4.已知△ABC是等腰直角三角形,点E,F是斜边AC的三等分点,则tan∠EBF=(  )
A.$\frac{16}{27}$B.$\frac{2}{3}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{3}{4}$

分析 由题意,设AC=6,点E,F是斜边AC的三等分点,可得EF=2.过B点作AC的垂下交于D,利用三角函数的定义可得tan∠DBF的值,利用二倍角可得答案.

解答 解:由题意,设AC=6,点E,F是斜边AC的三等分点,可得EF=2.过B点作AC的垂下交于D,∠DBF=∠DBE.
∵△ABC是等腰直角三角形,
AB=BC=$2\sqrt{3}$.DC=3
由勾股定理,可得:DB=3.
那么:tan∠DBF=$\frac{1}{3}$.
∴tan∠EBF=tan2∠DBF=$\frac{2tan∠DBF}{1-ta{n}^{2}∠DBF}$=$\frac{3}{4}$.
故选:D.

点评 本题考查了三角函数的定义的运用和等腰直角三角形的性质.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.省实验中学高三共有学生600人,一次数学考试的成绩(试卷满分150分)服从正态分布N(100,σ2),统计结果显示学生考试成绩在80分到100分之间的人数约占总人数的$\frac{1}{3}$,则此次考试成绩不低于120分的学生约有100人.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.正方形ABCD,沿对角线BD折成直二面角A-BD-C,则折后的异面直线AB与CD所成的角的大小为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.边长为2的正三角形ABC内(包括三边)有点P,$\overrightarrow{PB}$$•\overrightarrow{PC}$=1,则$\overrightarrow{AP}$•$\overrightarrow{AB}$的范围是(  )
A.[2,4]B.[$\frac{3-\sqrt{5}}{2}$,4]C.[3-$\sqrt{5}$,2]D.[$\frac{3-\sqrt{5}}{2}$,3-$\sqrt{5}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.圆C1:x2+y2-4x-2y+1=0与圆C2:x2+y2+4x-8y+11=0的位置关系为(  )
A.相交B.相离C.外切D.内切

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知曲线y=axcosx在$({\frac{π}{2},0})$处的切线的斜率为$\frac{1}{2}$,则实数a的值为(  )
A.$\frac{π}{2}$B.-$\frac{π}{2}$C.$\frac{1}{π}$D.$-\frac{1}{π}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设函数f(x)=2kx3+4(k-1)x2-3k2-2在区间(0,2)上是减函数,则k的取值范围是(  )
A.$k<\frac{2}{5}$B.$k≤\frac{2}{5}$C.$0<k≤\frac{2}{5}$D.$0≤k≤\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.正弦函数是奇函数,因为f(x)=sin(x+1)是正弦函数,所以f(x)=sin(x+1)是奇函数.以上推理(  )
A.结论正确B.大前提错误C.小前提错误D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{4}$=1两焦点分别为F1、F2,P是椭圆在第一象限弧上一点,并满足$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=1,过P作两条直线PA、PB分别交椭圆于A、B两点.
(1)求P点坐标;
(2)若直线AB的斜率为$\sqrt{2}$,求△PAB面积的最大值.

查看答案和解析>>

同步练习册答案